

Advanced Parallelizing Compiler Technology

2001 Annual Report

March 2002

Introduction

The Advanced Parallelizing Compiler (APC) project is the Millennium Project of the
Ministry of Economy, Trade and Industry, a joint public-private research and
development effort. Based on the Industrial Science and Technology Research and
Development System (ISTRDS), a system for nurturing new industries, a body was
created under the auspices of the Industrial Technology General Development
Framework to conduct R&D in advanced parallelizing compiler technology beginning
September 2000. Headed by Project Leader (PL) Dr. Hironori Kasahara, Professor at
the Faculty of Science and Engineering of Waseda University with Sub Leaders (SLs)
Prof. Hayato Yamana (Waseda University) and Dr. Hanpei Koike (AIST) and Group
Leaders (GLs) Mr. Kohichiro Hotta (JIPDEC/Fujitsu) and Mr. Tokuro Anzaki
(JIPDEC/Hitachi), the body consists of the Japan Information Processing Development
Corporation, a team of 21 researchers from Hitachi, Ltd. and Fujitsu Ltd. nominated
by JIPDEC, two collaborating research organizations (National Institute of Advanced
Industrial Science and Technology(AIST) and Waseda University) and subcontractors
University of Electro-Communications, Tokyo Institute of Technology, and Toho
University.

The target of this project is to strengthen international competitive power in
computer and related IT fields by doubling effective performance of multi-processor
systems (computers that organically connect multiple CPUs to deliver high computing
performance and are expected to be utilized for wide range of information processing
systems including future microprocessors, various portable information devices,
home-servers and so on) and improving the cost-performance and ease of use.
The key technology for improving the effective performance, cost effectiveness and ease
of use is the automatic parallelizing compiler technology. The project aims at attaining
about twice performance compared with automatic loop parallelizing compilers
available in the market by using the innovative multigrain parallelizing compilation
scheme launched from Japan. This target also means to double effective performance
obtained on the same shared memory multiprocessor hardware or decrease
manufacturing cost remarkably by reducing the number of processors to deliver the
same performance by half.
 Furthermore, this project has been researching and developing performance
evaluation technology to fairly evaluate the accomplishment of the project target since
there has been no scheme to judge the accomplishment of the numerical target for
parallelizing compilers. So far, efforts for selecting programs for the performance

evaluation and defining performance measurement schemes have been made. It has
been decided to choose suitable programs for performance evaluation of a multigrain
parallelizing compiler out of world standard benchmark programs, such as SPEC and
NAS Parallel Benchmarks.

Given the intense competition in the field of high-performance computing R&D, the
project team aims to complete its work within a mere three years. APC members have
been doing their best to attain world leading very difficult target fighting with current
budget condition though several compiler functions must be degraded.
 Some of major technical accomplishments in FY2001 are listed below:
・Manual implementation of the proposed automatic data distribution scheme using

First Touch method for indirect array reference gave us 5.9 times speedup for NAS
Parallel Benchmark CG (Class B) against SGI parallelizing compiler on 32 processor
SGI Origin 2000 distributed shared memory multiprocessor server.
・Manual implementation of the proposed medium grain parallelism exploitation

techniques realizing pipeline parallel processing with data locality optimization
gave us 2.7 times speedup for SPEC2000 applu against Sun Forte parallelizing
compiler on a 8 processor SUN SMP system and 2.4 times speedup against Compaq
parallelizing compiler on Compaq Alpha Server GS160 Model6/73 8 processor server.
・The proposed multigrain parallelism exploitation infrastructure technology gave us

3.3 times speedup for SPEC95 tomcatv program with a little manual program
restructuring against IBM XL parallelizing compiler, 1.9 times speedup for swim, 1.7
times speed up for su2cor, 4.3 times for mgrid and 1.7 times speedup for Perfect club
benchmark arc2d on IBM 8 processor SMP server RS6000 604e high node.

These very good results give us bright perspective for the target accomplishment in

the final year.
Parts of this year’s accomplishment are presented as 8 reviewed full papers, a

reviewed symposium paper, 13 technical reports, 6 annual convention papers, 5 patents
and 2 panel discussion positioning talks in international conferences.

This report consists of 3 chapters, The first chapter describes the developed
automatic multigrain parallelism exploitation technology and performance evaluation
of the individual technology. Chapter 2 includes the proposed performance evaluation
techniques without individual function evaluations. Chapter 3 shows a brief report of
the International Cooperation Committee with International Advisory Board, which
was introduced for an international assessment, international cooperation, and lists of
presented papers and patents.

Contents

Introduction

I. DEVELOPMENT OF ADVANCED PARALLELIZING COMPILER TECHNOLOGY................................... 1
1. DEVELOPMENT OF AUTOMATIC MULTI-GRAIN PARALLELIZING COMPILER TECHNOLOGY 1

1.1. MULTI-GRAIN PARALLELISM EXPLOITATION TECHNOLOGY 1
1.1.1. Infrastructure Technology for Multi-Grain Parallelism Exploitation 1
1.1.2. Medium-Grain Parallelism Exploitation Technology....................................... 2
1.1.3. Coarse-Grain Parallelism Exploitation Technology ... 2
1.1.4. Technique of Analyzing Interprocedural Multi-Grain Parallelism................. 3

1.2. DATA DEPENDENCY ANALYSIS TECHNOLOGY.. 3
1.2.1. Interprocedural Data Dependency Analysis Technology 4
1.2.2. Predicated Data-Flow Analysis Technique ... 4
1.2.3. Run-Time Data Dependency Analysis Technique .. 5
1.2.4. Parallelism Analysis Techniques for Fortran90 ... 5

1.3. AUTOMATIC DATA DISTRIBUTION TECHNOLOGY... 6
1.3.1. Automatic Data Distribution Technology for

Distributed Shared-Memory Multiprocessors 6
1.3.2. Data Locality Optimization Technology.. 7

1.4. SPECULATIVE EXECUTION TECHNOLOGY.. 7
1.4.1. Speculation Techniques for Medium-Grain Tasks for

Multi-Grain Parallelization................................. 8
1.4.2. Speculative Execution Technology for Coarse-Grain Tasks 8

1.5. SCHEDULING TECHNOLOGY .. 9
1.6. EXTENSIONS OF A PARALLEL PROGRAMMING LANGUAGE 10

1.6.1. Interface for Parallelization Ratio Tuning.. 10
1.6.2. Interface for Parallel Execution Efficiency Tuning...11

2. DEVELOPMENT OF TUNING TECHNOLOGY FOR PARALLEL PROCESSING................................. 12
2.1. PROGRAM VISUALIZATION TECHNIQUE... 12
2.2. TECHNIQUES FOR PROFILING AND UTILIZING RUN-TIME INFORMATION............. 13
2.3. FEEDBACK-DIRECTED SELECTION TECHNIQUE OF COMPILER DIRECTIVES 14
II DEVELOPMENT OF PERFORMANCE EVALUATION FOR PARALLELIZING COMPILERS 15
1. DEVELOPMENT OF EVALUATION METHODS FOR INDIVIDUAL FUNCTIONS 15
2. DEVELOPMENT OF AN OVERALL EVALUATION METHOD .. 15

2.1. CHOICE OF BENCHMARK PROGRAMS.. 16
2.2. CHOICE OF COMPILE OPTIONS ... 18

2.3. SETTING AND CONFIRMING THE EVALUATION ENVIRONMENT,
AND PRELIMINARY EVALUATION........... 19

2.3. RESULTS ... 19
2.4. ANALYSIS OF SPEC BENCHMARKS .. 20

2.4.1. Target benchmark programs.. 20
2.4.2. Measurement environment.. 20
2.4.3. Measurement results and property of each program..................................... 21

2.5. ANALYSIS OF PROGRAMS IN NAS BENCHMARK SUITE... 22
2.5.1. Analysis of parallelism for benchmark programs .. 22
2.5.2. Method for analysis .. 23
2.5.3. Results ... 23
2.5.4. Performance estimation for the loop aligned decomposition......................... 24

2.6. CONSIDERATION OF SPEC OMP2001 BENCHMARK SUITE................................... 24
2.6.1. Evaluation ... 24
2.6.2. Analysis of the result.. 25
2.6.3. Contribution to automatic parallelization .. 25

III. REPORT OF INTERNATIONAL COOPERATION COMMITTEE,

LISTS OF ACCOMPLISHMENT AND OTHER REFERENCE MATERIALS 26
1. REPORT OF INTERNATIONAL COOPERATION COMMITTEE... 26
2. LISTS OF ACCOMPLISHMENT AND OTHER REFERENCE MATERIALS 28

2.1. FUJITSU LTD. ... 28
2.2. HITACHI, LTD. .. 28
2.3. WASEDA UNIVERSITY, KASAHARA LABORATORY.. 29
2.4. WASEDA UNIVERSITY, YAMANA ＬABORATORY... 30
2.5. TOHO UNIVERSITY, YOSHIDA ＬABORATORY. .. 30
2.6. TOKYO INSTITUTE OF TECHNOLOGY ... 31
2.7. THE UNIVERSITY OF ELECTRO-COMMUNICATIONS... 31

1

I.I.I.I. Development of Advanced Parallelizing Compiler Technology

1. Development of Automatic Multi-Grain Parallelizing Compiler Technology

To accelerate programs on multi-processor systems, automatic parallelizing
compilers need to exploit not only simple parallilism among loop-iteretion in a program
but also complexed parallelism such as coarse-grain parallelism between
subroutine-calls, between loops including subroutine calls or between loops and also
fine-grain parallelism by sets of basic blocks,. To solve this problem, we are
researching and developing the automatic multi-grain parallelizing technologies that
makes the best use of multi-grain parallelism in programs and the tuning technologies
for parallel processing that enables to enhance the compiler’s parallelization of
programs by feedbacking run-time information or user’s knowledge to the compiler.
In this fiscal year, we have developed elements of technologies to solve these problems
and also we have started to evaluate each facility.

1.1. Multi-Grain Parallelism Exploitation Technology

A target of the research and development of multi-grain parallelism exploitation
technology, which is the base technology of automatic multi-grain parallel processing,
is to research and develop the technology for analysis of parallelism in a sequential
program and efficient use of the parallelism on shared memory multiprocessor systems.

This year, as the second year of the project, technology for multi-grain parallelism
exploitation considering cache optimization on commercial shared memory
multiprocessor systems, loop parallelization technology for efficient exploitation of time
and space locality, parallelism exploitation technology for sets of basic blocks and
interprocedural multi-grain parallelism exploitation technology extending
interprocedural dependency analysis technology were researched and developed.

1.1.1. Infrastructure Technology for Multi-Grain Parallelism Exploitation

This section reports multi-grain parallelism exploitation infrastructure technology
considering cache optimization on shared memory multiprocessor systems in the
multi-grain parallel processing which exploits coarse-grain parallelism among basic
blocks, loops and subroutines effectively in addition to the loop parallelism.

Though shared memory multiprocessor architecture has been widely used, with
increase of the number of processors the difference between peak performance and
effective performance has been getting larger. To cope with this problem, it is
important to use multi-grain parallelism using coarse-grain parallelism and near

2

fine-grain parallelism in addition to traditional loop parallelism. Moreover, the speed
gap between processor and memory is getting larger with the advance of the processor
technology. Therefore, the effective use of memory hierarchy, especially cache memory,
is very important to enhance the performance of multiprocessor systems.

The proposed multi-grain parallel processing scheme considering cache optimization
on SMP generates a parallelized program using OpenMP, which is a standard API for
SMP, to reuse shared data on cache memory among macro-tasks from a sequential
program. The effectiveness of the proposed scheme is evaluated on commercial SMPs
like IBM RS6000 SP 604e High Node server and SUN Ultra80 workstation.
 In the individual evaluation, OpenMP Fortran programs generated from partially
modified ‘tomcatv’ and ‘mgrid’ from SPEC95FP benchmarks by using the compiler
module which is under development are compiled by IBM XL Fortran version 6.1 and
SUN Forte 6 Update 1 and executed on IBM RS6000 and SUN Ultra80. The
evaluation gave us the prospect to attain performance improvement such as 2.5 times
in ‘tomcatv’, 2.8 times in ‘swim’ and 5.8 times in ‘mgrid’ against the loop parallelizing
compiler IBM XL Fortran version 6.1 on 8 processor SMP RS6000, and 2.5 times in
‘tomcatv’ and 3.6 times in ‘swim’ against minimum execution time by SUN Forte 6
Update 1 compiler on 4 processor SMP Ultra80.

1.1.2. Medium-Grain Parallelism Exploitation Technology

We have been researching and developing the techniques extracting medium-grain
(loop) level parallelism.

In 2001 fiscal year, we have developed the techniques extracting not only
DOALL-parallelism without any synchronization among processors, but also pipeline
parallelism which each processor synchronizes with only near processors. We, at first,
have developed the methods extracting pipeline parallelism efficiently. And we also
have developed the methods to implement pipeline parallelism with ‘FLUSH’ directive
in openMP.

Applying these techniques to ‘applu’ program of SPEC2000 benchmark suits, we may
get the performance almost twice as that of the base compiler on the Alpha Server.
Because we can extract both DOALL-parallelism and pipeline parallelism.

The results of this research has been published in SIG Notes of IPSJ.

1.1.3. Coarse-Grain Parallelism Exploitation Technology

It is important for automatic multigrain parallelizing compiler to exploit the coarse
grain parallelism such as between subroutines, loops, and basic blocks to achieve good
performance. We have been researching and developing the coarse grain parallelizing

3

mechanism, which can extract the coarse grain parallel tasks and generate the code
not only for the speculative execution schema, but also for the non-speculative
execution schema.

In 2001 fiscal year, we have developed the analysis routines, which recognize several
points needed to find the coarse grain parallel task. That is, for each basic block, the
use data definition point, the output data use point, the branch statement deciding the
execution of it, and the branch statement deciding not to execute it are collected.
These points and the length between them are used for deciding the initiation time and
effect of parallel execution of each basic block. We have also been analyzing them for
each loop nest. We consider that using these data, we can collect the fundamental data
for extracting the coarse grain tasks.

1.1.4. Technique of Analyzing Interprocedural Multi-Grain Parallelism

Loop parallelization techniques cannot extract sufficient parallelism from the
programs including such sections as those outside loops or sequential loops. So, the
multi-grain parallelization technique, which can extract parallelism from multiple
grains of sections (tasks) such as basic blocks or procedures in programs, is necessary.
In this study we have been researching the technique of analyzing interprocedural
multi-grain parallelism using the interprocedural automatic parallelizing compiler
WPP (Whole Program Parallelizer) as a base compiler.

In this fiscal year, we have designed two techniques. One is the parallelism
analysis technique that extracts parallelism from interprocedural hierarchical tasks.
The other is the OpenMP program generation technique. The former technique uses a
hierarchical control-flow graph (we call it a Control Flow Summary graph: CFS) made
of a program by WPP. First, regarding each node of the CFS as a task, the technique
analyzes control and data dependences between tasks. Second, for each layer of the
CFS, it applies a static task scheduling method based on the CP/MISF only to the layer
and estimates the execution time of the program with that scheduling. Third, it
selects the layer with the scheduling that provides the shortest estimated execution
time of the program and it applies a task parallelization to the layer. Fourth, it
determines the location of each barrier in parallel regions. Last, the OpenMP
program generation technique generates an OpenMP program with the above extracted
parallelism. Using these techniques, much task parallelism is expected to be
extracted from program sections that have no loop parallelism.

1.2. Data Dependency Analysis Technology

This technology is the basis of automatic parallelization. This fiscal year, we have

4

developed technologies for interprocedural data dependency analysis to enlarge the
area for parallelization. And we have also developed and evaluated the predicated
data-flow analysis and run-time data dependency analysis techniques that we started
development last fiscal year.

1.2.1. Interprocedural Data Dependency Analysis Technology

The interprocedural dependency analysis is a key technology for an enhancement of
an automatic parallelization.

To cancel parallel execution overheads and get an efficient effect of parallel execution,
a compiler needs to recognize a parallelizable potion as coarsely as possible. But when
a compiler recognizes a parallelizable potion, a border between procedures limits a
scope of parallelizaion analysis.

A dependency analysis across the border between procedures make an analyzing
scope wide. As a result this interprocedural dependency analysis make a coarse grain
parallelizable portion.

In this research item we are studying the interprocedural dependency analysis
technology for the medium grain parallelization function.

In this fiscal year, we have researched and developed following elemental functions.
- Output function for internal information of our compiler

This function outputs internal information of our compiler to an external file.
- Input function for internal information of our compiler

This function inputs an internal information of our compiler from an external file.
- Fusion function for internal information of some other procedures

This function fills an internal interface of a caller with an internal interface of a
callee.

- Analysis of procedure call tree
This function analyzes procedure call tree.

These elemental functions are bases of the interprocedural dependency analysis.
We consider that we will be able to make up the interprocedural dependency analysis

function for the medium grain parallelization function by using these elemental
functions.

1.2.2. Predicated Data-Flow Analysis Technique

Our interprocedural parallelizing compiler WPP parallelizes loops by analyzing
inter-procedural data dependences. There are some loops, which are not parallelized
by WPP but can be parallelized principally. Such is the case where the data reference
preventing parallelism executes only on a condition and the condition never holds when

5

using an input data. In this study, we have been researching and developing the
predicated data-flow analysis in order to parallelize those loops.

In this fiscal year, we have been examining how to implement predicated data-flow
analysis. Predicated data-flow analysis is implemented as follows. First, data-flow
analysis phase analyzes for each statement an array reference region with a predicate,
the condition the statement with the reference region executes. Second,
data-dependence-analysis phase calculates for each loop such a condition that there is
no loop-carried dependence using the array reference regions with predicates. Last,
code-generation phase generates multi-versioned code, in which at runtime the
condition is tested and selected is one of three loops; a serial loop and two parallel loops
to which array privatization is applied and is not, respectively.

As a preliminary evaluation, we applied our technique by hand to such a loop in
SPECfp95/apsi that WPP cannot parallelize. The parallel loop to which array
privatization is applied is selected at runtime and its scalability is expected to achieve
about six on eight processors.

1.2.3. Run-Time Data Dependency Analysis Technique

Most parallelizing compilers analyze loop-carried data dependences in a loop and
judge the parallelizability of the loop. Those compilers, however, cannot parallelize the
loop that includes an indirect-referenced array and has a possible loop-carried data
dependence between two references of the array because the compilers can not judge
the parallelizability of the loop at compile time. In this study, we have been researching
and developing the run-time data-dependence analysis in order to parallelize the loop.

In this fiscal year we have implemented the run-time data-dependence analysis on
our interprocedural parallelizing compiler WPP. The analysis finds target loops in an
input program and outputs a code with the following workings. First, the code records
the accesses to variables referenced in a target loop executing the loop in parallel.
Second, the code checks the data dependences using the access record and re-executes
the loop sequentially if the result of the check inhibits the parallelization of the loop. As
a result, we can expect the good performance of a loop if the loop is judged to be
parallelized at run time.

1.2.4. Parallelism Analysis Techniques for Fortran90

Recently, there are cases where we use Fortran90 as a programming language for
the scientific application programs. The Fotran90 includes some new features in
addition to the conventional FORTRAN77 specifications. So, this new language
provides the parallelizing compilers with some challenges. In this study, aiming at

6

extracting more parallelism from Fortran90 programs we have been developing
parallelism analysis techniques for Fortran90, expanding the interprocedural analysis
techniques of the WPP.

In this fiscal year we have been designing a procedure cloning technique for the
procedures including optional arguments or automatic arrays. This technique is
realized in the following steps: the detection of optional arguments and automatic
arrays, the elimination of optional arguments and calls to the PRESENT functions in
the cloned procedures, and the change of automatic arrays to the fixed-size arrays.
This technique is expected to extract more parallelism from Fortran90 programs than
before.

1.3. Automatic Data Distribution Technology

The automatic data distribution technology is the compiler technology that partitions
data and assigns each of them to the local memory of the most appropriate processor.
There is a gap between the logical memory view and the physical memory structure on
physically distributed shared-memory processors. So, different memory models need
different optimization techniques. In this fiscal year, we have examined and designed
the automatic data distribution technique for distributed shared-memory processors
and developed the optimization technique of data locality for the processors with
distributed shared memories or distributed shared caches.

1.3.1. Automatic Data Distribution Technology for Distributed Shared-Memory
Multiprocessors

In recent years, the distributed shared-memory multiprocessors (DSMs) have
attracted attention of users because of their performance scalability and their ease of
parallel programming; the former is due to physically distributed memories and the
latter logically shared memories. Although usual memory-referencing instructions for
DSMs can access physical memories on remote processors as well as those on local
processors, any reference to remote data takes more time than one to local data. For
this reason, data distribution, which determines how to assign data to processors, is
important to obtain good performance for DSMs. In this study, aiming at determining
the most appropriate data distribution by compilers, we have been researching and
developing automatic data distribution techniques for DSMs.

In this fiscal year, we have been designing and evaluating our data distribution
technique for indirectly referenced arrays. Our automatic data distribution technique,
the first-touch control data distribution method (FTC), realizes complex data
distribution accurately using the first-touch page allocation mechanism of the

7

operating system. If a program includes an indirectly referenced array, our technique
generates a code where a temporary array is used until the value of an index array of
the array is determined and the indirectly referenced array is distributed by the FTC
immediately after that.

As preliminary evaluation, we compared two versions of the NPB 2.3 serial/CG
program. One is the program to which we apply our technique by hand. The other is
the original program to which the OS applies the first-touch mechanism naturally. The
former version is expected to run 5.9 times faster than the latter version on SGI(TM)
Origin(TM) 2000 (32 processors).

1.3.2. Data Locality Optimization Technology

In multi-grain parallel processing on a multiprocessor system having distributed
caches and distributed shared memories, in order to achieve high performance, it is
required to develop automatic data distribution techniques which can reduce data
transfer overhead among coarse-grain tasks by using distributed caches or distributed
shared memories effectively.

This annual report presents a data-localization scheme to utilize coarse-grain task
parallelism and data locality in multi-grain parallel processing. Concretely, so as to
realize loop-aligned decomposition on large regions composed of loops in
macrotask-graphs, a macrotask selection method for data-localization and an inter-loop
dependence analysis method to resolve iteration-based data dependencies among loops
inside data-localization target regions are proposed. This report also describes
preliminary performance evaluation using manually generated codes on a
multiprocessor system SGI Origin 2000. The evaluation shows that coarse-grain task
parallel processing with data-localization can achieve 6.78 times speedup on 8 PEs in
SPECfp95 ‘tomcatv’ program compared with sequential processing.

1.4. Speculative Execution Technology

In this technological item, we research and develop the speculative execution scheme
that is one of the element technologies of "Automatic Parallelizing Compiler". Our
target of the speculative execution is not the branch prediction used in the
conventional processor, that is, only instruction level speculation, but a medium grain
size such as loop iteration level, and course grain size, such as between subroutines,
loops, and basic blocks, is targeted.

In 2001 fiscal year, we continue to research and develop the algorithm of speculative
execution for the medium grain tasks. Then, we have developed the algorithm. As
for the speculation for the course grain size tasks, we began to research and develop

8

the effective speculation scheme by optimizing the task size and its initiation time.
Moreover, we continue to develop the support mechanism to apply speculative
execution effectively by collecting the dynamic information of a program.

1.4.1. Speculation Techniques for Medium-Grain Tasks for Multi-Grain
Parallelization

The following four features are indispensable to adopt the speculative execution for
medium grain tasks: (1) dividing a program into a set of tasks that are suitable for
speculative execution, (2) selecting a task to be speculated, (3) dynamic scheduling to
decide the initiation time of tasks, and (4) discarding the tasks that became
unnecessary.

In 2001 fiscal year, we have developed the algorithm to adopt the above four
mechanisms based on the research and development for (1) and (2) in 2000 fiscal year.
Then, we have confirmed the usefulness of the scheme using the “compress program”
from SPECcpu95 benchmark. Generally, since the execution time of loops holds the
large portion of the total execution time, the conventional loop parallelization scheme
improves the program performance, dramatically. However, when the data
dependence cannot be analyzed statically, the conventional parallelization scheme
assumes that the data dependence exists. For this reason, such a loop cannot be
parallelized even if the loop carried dependence (LCD) occurs only once in 10,000 times,
dynamically. However, the speculative execution scheme has been known to speedup
such a loop.

In this technological item, we propose the scheme to apply the speculative execution
alternatively only to the portion expected to be speeduped effectively, using the
overhead parameter required for the book-keeping process when the speculation fails.
Such overhead has not been considered on the conventional speculative execution
schemes. The proposed scheme enables the alternative speculative execution using the
overhead parameter for book-keeping, the LCD existence probability, and the timing of
the speculative execution initiation. As a result, we have confirmed the usefulness of
the algorithm through the implementation using “compress program”. The result of
this research has been published in SIG Notes of IPSJ.

1.4.2. Speculative Execution Technology for Coarse-Grain Tasks

For course grain parallel execution, such as between subroutines, loops, and basic
blocks, we have been researching and developing a frame-work which involves
speculative execution and non-speculative execution, and optimizes the task size and
its initiation time.

9

In 2001 fiscal year, we have been developing the speculative coarse grain task
selection routine, in which each loop nest is checked how much earlier it can be
executed speculatively from the branch statement deciding the execution of it. Based
on conditions, such as the length between the use data definition point and the output
data use point, and the length between the use data definition point and the branch
statement deciding the execution, the routine decides whether the loop nest should be
executed speculatively. We have been also developing the code generation routine for
speculative execution. It generates the initiation code, the synchronization code, the
code to store the output data in temporary area, the copying code from the temporary
area to the original area when the speculation succeeds, and the cancellation code
when the speculation fails, and other code for parallel thread generation.

1.5. Scheduling Technology

To efficiently execute programs in parallel on a multiprocessor system, a
minimum-execution-time multiprocessor scheduling problem must be solved which
determines the assignment of tasks to processors and the execution order of the tasks
so that the execution time is minimum. It is known that the time complexity of this
problem is strong NP-hard for a general problem which assumes arbitrary task
processing time, arbitrary number of processors, arbitrary shapes of task graphs, and
arbitrary inter-processor data communication time. Because of the intractability of
the scheduling problem, it is necessary for parallelizing compilers to develop heuristic
algorithms. Especially, it is important to develop scheduling algorithms which reduce
data transfer overheads among tasks considering data transfer among tasks using
distributed shared memory or cache memory on a multiprocessor system.

This section describes a coarse grain static task scheduling scheme
DT-Gain/CP/MISF considering the cache optimization. DT-Gain/CP/MISF assigns a
macrotask (MT) to a processor as follows. At a scheduling time instance, the
scheduler calculates amounts of shared data among previously assigned tasks onto
each processor and ready tasks (data transfer gain), and choose a combination of a
ready task and processor which gives us the largest amount of shared data. After the
calculation of the amount of shared data among MTs that are already assigned to
processors and a ready MT, a combination of a processor and a MT that shares the
most common data is chose. If there are several combinations of ready tasks and
processors having the same amount of shared data, the combination including a task
having the largest CP/MISF priority is selected.

The proposed scheduling algorithm is implemented on OSCAR Fortran multigrain
parallelizing compiler modules and generates OpenMP Fortran after coarse grain task

10

scheduling considering cache optimization. The individual performance evaluation of
the scheduling algorithm partly unified with the multigrain parallelism exploitation
technology shows perspective we will be able to obtain 6.16 times speedup (4.56 times
faster than Forte auto parallelization) for SPEC95 ‘swim’ and 3.05 times speedup (2.37
times faster than Forte auto parallelization) for ‘tomcatv’ on Sun Ultra80 4 processor
workstation though the sequential source codes of ‘swim’ and ‘tomcatv’ are partly
modified.

Currently, we started development of an algorithm reducing memory access
overheads using cache prefetch functions in addition to the above scheduling
algorithm.

1.6. Extensions of a parallel programming language

This research item is necessary for the combination of some functions.
In this fiscal year, we have researched some specifications for the interface for

parallelization ratio tuning and the interface for parallel execution efficiency tuning.

1.6.1. Interface for Parallelization Ratio Tuning

Compiler's automatic parallelization is widely used to obtain a good performance for
programs on shared-memory multiprocessors. The performance, however, is limited
because some programs need dynamic information for the parallelization judgement
but most parallelizing compilers just use static information. Although there are some
methods that judge the parallelizability of a program at run time, they cause a runtime
overhead. So, the tuning technology for parallel processing and the directives for the
tuning is important: the former uses a user's knowledge about a program and the latter
makes the knowledge to be reflected in the program. In this study, aiming at
developing some tuning directives that make possible to extract more parallelism from
programs, we have been researching the extensions of a parallel programming
language.

In this fiscal year, we have been examining directives that are the interface between
our parallel tuning tool and our parallelizing compiler. We propose six directives or
clauses. They are classified into three items. One provides the compiler with some
hints such as the relation between variables. Another is concerned about a
non-standard parallelization: the directive specifying the target loop and the variable
name for the runtime parallelization. The other is concerned about the OpenMP: the
clause specifying the name of an induction variable that is difficult to find for compilers.
By inserting the above directives or clauses into a user's program, we can expect the
speedup of the parallel performance of the program.

11

1.6.2. Interface for Parallel Execution Efficiency Tuning

As an interface for the tuning of parallel execution efficiency, we have examined
some specifications from two angles. These are specifications that assist to get an
efficient effect of parallel execution.

- Interface between Optimization Function
- Interface for Enhancement of Parallelization Function of OpenMP Fortran
We have examined five kinds of specification. As a result, we have decided that the

prohibition of optimization is an interface between optimization functions and that the
SECTION PRIVATE and processor binding are the interface for enhancement of
parallelization function of OpenMP Fortran.

12

2. Development of Tuning Technology for Parallel Processing

Our goal in this research and development is to establish the interactive and
platform-free parallelization tuning technology that speeds up the execution of a given
program making the best use of dynamic information, which can not be obtained from
compiler's static analyses. To achieve our goal we research and develop the following
element techniques of the tuning technology for parallel processing: the program
visualization technique (the technique summarizing, extracting, and visualizing the
factors inhibiting parallelization), the technique for profiling and utilizing run-time
information (the technique profiling run-time information and reflecting it to compiler's
optimization), and the feedback-directed selection technique of compiler directives (the
technique tuning the combination of compiler's optimizations). In this fiscal year we
have been conducting the examination and development of each of those element
techniques.

2.1. Program Visualization Technique

To obtain high performance on multiprocessors program parallelization is
indispensable. So, compiler's automatic parallelization has been widely used. The
automatic parallelization, however, is not enough for getting the maximal performance
of a program. The parallelization tuning using user's knowledge is very important. To
inspect the parallelism of a program efficiently it is important for tuning tools to
provide users with helpful information such as compiler's analysis results. For example,
there are some tools that show pairs of statements that have data-dependence
relationship prohibiting parallelization. Showing those statements helps users to find
causes of prohibiting parallelization. These tools, however, can not show any statement
having data-dependence relationship in a procedure called within a loop. So, users
have to find such statements for themselves; that is a laborious task for them. In this
study, we are aiming at developing an effective parallelization-tuning tool for this case
and are researching program-slicing technique that shows statements having
data-dependence relationship beyond procedure boundaries.

In this fiscal year, we have been developing the following two tools. One is the
interprocedural data-dependence-locating tool, which finds all the statements having
data-dependence relationships in a loop including procedure calls even if those
statements exist in a procedure called within the loop. The other is the interprocedural
program slicing tool, which finds a program slicing beyond procedure boundaries. The
former tool finds the statements with data dependences by comparing those array
reference regions in the following way. First, the tool finds automatically all the

13

data-dependence relationships between assignment statements or calls to procedures
in the same procedure as the target loop. Second, when the user specifies a call to a
procedure, the tool finds on demand all the data-dependence relationships between any
statement in the callee procedure and the statement that has the data dependence
with the call to the procedure.

The latter tool finds the set of statements that affect the values of arrays involved in
a given statement beyond procedure boundaries. As above two tools can support users
to judge whether data dependences exist or not for loops including procedure calls, we
can expect the parallelization tuning to be done efficiently.

2.2. Techniques for Profiling and Utilizing Run-Time Information

In the parallelization tuning, we first inspect the causes of poor performance for each
part of a program. This inspection needs the hardware-counter information such as the
number of data-cache misses. In the past, the collecting methods of these kinds of
information or the kind of information that can be collected were different for each
machine. So, it was difficult for users who use different kinds of machines to tune their
machines. To ease such tuning, a platform-free library PAPI (Performance Application
Programming Interface) that has the capability of collecting some hardware-counter
information is proposed.

When the cause of poor performance for a loop is found by the above inspection, it
sometimes happens that the cause is due to an inappropriate transformation by an
optimizing compiler. That transformation is considered to be conducted based on
indefinite information about the execution time of the loop or the loop trip counts,
whose values are sometimes difficult to obtain at compile time. So, the technique for
profiling, utilizing runtime information, and generating an optimized code has
attracted attention of users. In this study, aiming at developing a platform-free
interface that can collect hardware-counter information and loop-execution information,
we have been researching the technique for profiling and utilizing runtime
information.

In this fiscal year we have provided the precise definition for the PAPI specifications,
defined output functions for the collected information, and implemented the PAPI
library and the output functions on a Hitachi SR8000 parallel processor. We have also
made a demand specification for the library collecting the loop-execution information
and developed that library. In the former work, we clarify the PAPI specifications using
the reference code that the PAPI project provides because there are some obscure
points in the PAPI 1.1.5 specifications. We also define new output functions for the
collected information because the PAPI library includes no such functions. In the latter

14

work, we include the following as the demand specification: the execution time for a
loop, the loop trip counts, the stride of the loop, and the execution time per a iteration.
We also determine the specification and the functions for eight output functions. Using
the above results, it is expected to conduct the parallelization tuning using the
platform-free interface that has the capability of collecting some hardware-counter
information and loop-execution information.

2.3. Feedback-Directed Selection Technique of Compiler Directives

Optimizing compilers apply many kinds of loop transformation to a given loop nest.
However, it is difficult for the compilers to select the optimized loop transformation or
to determine the optimized loop expanding parameter. So, the option tuning, which
determines the optimized compiler options or compiler directives based on runtime
information, is important. There are two option-tuning tools for user programs. One
optimizes compiler options, which are specified to the whole program. The other
optimizes compiler directives, which can be specified to each loop. The former can not
specify different options for different loops. The latter does not consider the optimized
combination of directives that are effective to multiple loop nests as a whole. In this
study, aiming at developing the option-tuning tool that is effective to multiple loop
nests and finds the optimized combination of parallel and optimization directives in a
short time, we have been researching the feedback-directed selection technique of
compiler directives.

In this fiscal year we have conducted the examination of existing research, some case
studies, and the design of our tool. This tool has the following two features. One is that
it applies the same combination of parallel and optimization directives to each multiple
loop nest in one trial and it measures the execution time of each multiple loop nest. The
other is that it uses the fractional factorial design to determine the combination of
directives for multiple loop nests. Using this tool, it is expected to determine the
optimized combination of directives for multiple loop nests as a whole in a small
number of combinations.

15

Ⅱ. Development of performance evaluation for
parallelizing compilers

The goal of this research is to establish the technology for more objective

performance evaluation of a parallelizing compiler for SMP machines. We are
developing this technology along with the evaluation of Research Theme I:
"Development of Advanced Parallelizing Compiler Technology", and will use it in the
next year’s final evaluation of this project. Because our Parallelizing Compiler
Technology developed by this project includes several optimization functions, the
evaluations of each function are needed. We use the kernel-level programs and compact
applications to evaluate these functions. We planed to use full-scaled application level
benchmarks for the total evaluation. This year, we have investigated the parallelism of
these benchmarks, built and checked the evaluation environments, selected the
benchmarks, developed the guidelines for evaluating the performance of our
technology.

1. Development of evaluation methods for individual functions

This year we started collecting the benchmarks for evaluating each optimization
function. Also we investigated the parallelism of loop-level and coarse-grain level in the
programs that are included in NPB, and had some knowledge from this investigation,
which is described in 2.5. Other evaluations of each function are included in each
function’s description in Chapter I.

2. Development of an overall evaluation method

This year, we first built the environments for evaluating the performance of the
benchmarks, checked whether the candidate benchmarks can run on these
environments, then selected the benchmarks to use in the final evaluation, chose
compile options, evaluated the performance of the selected benchmarks, and developed
the guidelines for the final evaluations. We will describe our three evaluation
environments in 2.3.

Our goal is to get the double performance on the same SMP machine compared with
the objects generated by the commercial compilers that were released at the time this
project began (Oct, 2000). Because of the nature of parallel execution, the best
performance is not always obtained by using the maximum number of CPUs. So in this
situation we will use CPUs by which we can obtain the best performance by these
compilers.

16

2.1. Choice of benchmark programs

First, it will be necessary to use the well-known benchmarks for an overall
evaluation. Also the benchmarks will be needed to have some scale to evaluate the
parallel execution, while we can run these benchmarks on our environments. Of course
some of these benchmarks can be parallelized by the current technology, which means
it is impossible to achieve the double performance by our technology. Also some
benchmarks may not have any parallelism that means there is no room of applying our
technology at all.

Here we define these groups of attributes as follows.
- High level parallelism benchmarks:

Even the commercial compilers can already achieve more than 50% scalability
factor of the number of CPUs.

- Low level parallelism benchmarks:
The scalability exists but not more than 50% of the number of CPUs by the
commercial compilers.

- Difficult to parallelize benchmarks:
Parallel execution time is the same level or even slower than the serial execution
by the commercial compilers.

In this research we selected the benchmarks from SPECfp2000 and NPB, which are
well-known in the scientific and engineering area, and tested whether these
benchmarks can run on our environments each of which consists of the SMP machines
and the commercial compilers.

SPECfp2000 benchmark suite is developed by SPEC/OSG, announced in 1999 as the
successor of SPEC CFP95 benchmark suite. The performance result of this suite have
been published by over 10 major benders and more than 230 systems including all the
SMP machines of our environments. We selected 6 benchmarks from this suite written
in FORTRAN77 as candidate of our evaluation benchmarks. FORTRAN77 is the only
supported language developed by this project. The detailed analysis of these
benchmarks is described in 2.4 and 2.6.

NPB benchmark suite is provided by NAS(Numerical Aerospace Simulation)
program of NASA Ames Research Center, and targets the development of 21th
century’s aerospace vehicle using CFD (Computational Fluid Dynamics) computation.
NPB simulate the computation and data transformation of the CFD programs and
consists of 5 kernel benchmarks and 3 virtual application programs. All of these 8

17

benchmarks has 4 problem sizes to run, and these are identified by Class A, B, C and W.
Because the IS benchmark is not floating point program, we select 7 benchmarks from
these 8 benchmarks. And we tested Class A, B, C of these benchmarks for our
evaluation. We omitted Class W because the dataset size will be too short for parallel
execution. The result showed that the result of Class B and Class C are very much the
same attribute from the viewpoint of parallelism except the case of CG. Class B and C
cannot run on some of the machines because of the lack of memory, so we select Class A
of 7 benchmarks and Class B CG as the candidates. Class B CG can run on all of our
evaluation environments.

The scalability results of SPECfp2000 are below,
wupwise : 1.1times/20PE by SGI
swim : 4.5times/7PE by IBM
mgrid : 17.3times/32PE by SGI
applu : 17.3times/29PE by SGI
sixtrack : 1.0times/2PE by SGI
apsi : 1.0times/2PE by SGI

The scalability results of NPB are below,
EP Class A: 1.0times/2PE by SGI
MG Class A: 3.0times/8PE by COMPAQ
CG Class A: 31.2times/27PE by SGI
CG Class B: 3.0times/7PE by COMPAQ
FT Class A: 1.1times/4PE by SGI
LU Class A: 5.7times/31PE by SGI
SP Class A: 2.0times/5PE by IBM
BT Class A: 1.1times/1PE by SGI

From the result of these tests we can categorize the benchmarks as follow. We use
the best scalability of our three environments in this categorization. In addition, some
benchmarks are classified as high level parallelism benchmarks on some of the
environments, but these are classified as low level parallelism benchmarks on other
environments. For example, ‘applu’ is classified as high level on SGI, but classified as
low level on COMPAQ and IBM.
- High level parallelism benchmarks

swim, mgrid, applu, CG Class A

- Low level parallelism benchmarks
MG Class A, CG Class B, LU Class A, SP Class A

18

- Difficult to parallelize benchmarks
wupwise, sixtrack, apsi, EP Class A, FT Class A, BT Class A

The guideline of evaluation will be as follows.
For high level parallelism benchmarks, it will be impossible to achieve the double

performance, but any of the performance improvement must be achieved.
For low level parallelism benchmarks, it will be the best candidate to achieve the

double performance.
For difficult to parallelize benchmarks, if some of our technology can apply to these

benchmarks, the performance improvement will be more than the double. In this case
we can use any number of CPUs to improve the performance.

Currently, we have not yet proved some of these benchmarks has no parallelism, so
we will use these 14 benchmarks to evaluate next year. In addition we can add some
other well-known benchmarks such as SPECfp95 for the total evaluation based on
these guidelines to enforce our evaluation.

2.2. Choice of compile options

To evaluate the benchmarks it is important to choose the performance compiler
options. The compiler developed by this project also uses these commercial compilers as
back-end, so the same option set will be used for the final evaluation for fairness of this
evaluation. This means that these options set must also be robust enough.

So we started with the options published by each bender’s SPECfp2000-base reports
with automatic parallelization options of each compilers. The compiler options are as
follows.
- SGI: -Ofast=ip27 -LNO:fusion=2 -apo
- COMPAQ: -v -arch ev6 -O5 -fkapargs='-ur=1' -fkapargs='-conc'
- IBM: -O3 -qarch=ppc –qhot -qsmp=auto

The detail results of each benchmark of each environment are described in 2.3.
Then we added some of the options that are similar to our developing functions. We

tested 6 cases options on SGI environment, 6 cases options on COMPAQ, 3 cases on
IBM.

But the maximum differences of every benchmark from the point of scalability
factors are from 9% slower to 9% faster than the original compiler options. This means
that there are only little impacts on the scalability factors of these benchmark
performance. So we decided to use SPECfp2000_base compiler options not only for the
evaluation of the commercial compilers but also the backend compiler options for our
compiler.

19

2.3. Setting and confirming the evaluation environment, and preliminary evaluation

results

Our evaluation environments are consist of SMP machines and a set of compilers as
follows.
- SGI Origin2000

R10000@195MHz, 32CPUs, 11GB Memory

MIPSpro Fortran90 V7.30

- COMPAQ AlphaServer GS160 Model 6/731
Alpha21264@731MHz, 8CPUs, 4GB Memory

Compaq Fortran V5.4-1283-46ABA

KAP Fortran V4.3

- IBM RS/6000
PowerPC604@200MHz, 8 CPUs, 1GB Memory

IBM XL Fortran 7.1.0

The scalability results of each environment and each benchmark are listed below. We
use SPECfp2000_base compiler options of each compiler described in section 2.2 to get
these results. As far as we use these compiler options, all benchmarks can run correctly,
so we can use these environments as the total evaluation.

SPECfp2000 :
wupwise : 1.1times/20PE(SGI), 0.1times/1PE(COMPAQ), 0.6times/8 PE(IBM)
swim : 9.5times/31PE (SGI), 2.7times/8PE (COMPAQ), 4.5times/7 PE (IBM)
mgrid : 17.3times/32PE (SGI), 4.1times/8PE (COMPAQ), 4.0times/6 PE (IBM)
applu : 17.3times/29PE (SGI), 1.2times/4PE (COMPAQ), 1.6times/8 PE (IBM)
sixtrack : 1.0times/2PE (SGI), 0.9times/1PE (COMPAQ), 0.9times/2 PE (IBM)
apsi : 1.0 times/2PE (SGI), 0.2 times/1PE (COMPAQ), 0.8 times/2 PE (IBM)

NPB :
EP Class A : 1.0 times/2PE (SGI), 0.7 times/1PE (COMPAQ), 0.9 times/8 PE (IBM)
EP Class B : 1.0 times/2PE (SGI), 0.7 times/1PE (COMPAQ)
EP Class C : 1.0 times/2PE (SGI), 0.7 times/1PE (COMPAQ)
MG Class A : 1.0 times/1PE (SGI), 3.0 times/8PE (COMPAQ), 0.9 times/3 PE (IBM)
MG Class B : 1.0 times/2PE (SGI), 3.1 times/8PE (COMPAQ)
MG Class C : 1.0 times/2PE (SGI), 4.3 times/8PE (COMPAQ)

20

CG Class A : 31.2 times/27PE(SGI), 1.0 times/8PE(COMPAQ), 4.5 times/6 PE(IBM)
CG Class B : 4.4 times/31PE (SGI), 3.0 times/7PE (COMPAQ)
CG Class C : 5.9 times/32PE (SGI), 2.3 times/8PE (COMPAQ)
FT Calss A : 1.1 times/4PE (SGI), 1.0 times/1PE (COMPAQ), 1.0 times/2 PE (IBM)
FT Class B : 1.0 times/4 PE (COMPAQ)
LU Class A : 5.7 times/31 PE, 1.0 times/1PE (COMPAQ), 1.4 times/4 PE (IBM)
LU Class B : 4.8 times/31PE (SGI), 1.3 times/4PE (COMPAQ)
LU Class C : 7.4 times/20PE (SGI), 1.1 times/4PE (COMPAQ)
SP Class A : 1.0 times/1PE (SGI), 1.0 times/1PE (COMPAQ), 2.0 times/5 PE (IBM)
SP Class B : 1.0 times/1PE (SGI), 0.9 times/1PE (COMPAQ)
SP Class C : 1.0 times/1PE (SGI), 0.9 times/1PE (COMPAQ)
BT Class A : 1.1 times/1PE (SGI), 1.0 times/1PE (COMPAQ), 0.6 times/2 PE (IBM)
BT Class B : 1.0 times/1PE (SGI), 1.0 times/1PE (COMPAQ)
BT Class C : 1.0 times/1PE (SGI), 1.0 times/1PE (COMPAQ)

2.4. Analysis of SPEC benchmarks

As described in 2.1, the six benchmark programs (‘swim’, ‘mgrid’, ‘wupwise’, ‘apsi’,
‘applu’, ‘sixtrack’) written in FORTRAN77 have been selected from SPEC CFP2000 as
the programs which are used for the performance evaluation. This section shows the
properties of these programs by measuring the parallel processing times of these
programs and the same programs in SPEC OMP2001.

2.4.1. Target benchmark programs

All of the six benchmark programs selected from CFP2000 are written in
FORTRAN77.

The smallest program, ‘swim’, consists of 435 lines, 5 subroutines/functions and one
file. The largest program, ‘sixtrack’, consists of 47,252 lines, 235 subroutines/functions
and 123 files.

2.4.2. Measurement environment

Following list shows the multiprocessor systems which are used for this
measurement.

a Sun Ultra80, 4CPU(450MHz, 4MB-L2, 1GB memory), SunOS5.8 7/01
b Sun Ultra80, 4CPU(450MHz, 4MB-L2, 2GB memory), SunOS5.8 7/01
c DELL Power Edge 6400, 4CPU(700MHz, 2MB-L2, 512MB memory),

Red Hat Linux 6.2 Kernel 2.2.14-5.0smp．

Each machine is a shared memory type multiprocessor. The size of main memory

21

differentiates a. and b.
Following list shows the parallelizing compilers and the parallelizing preprocessor

which are used for this measurement.
- Sun Forte Developer 6 update 2, f95 parallelizing compiler
- PGI Workstation 3.2, pgf90 parallelizing compiler
- Visual KAP for OpenMP 3.9 parallelizing preprocessor

Sun and PGI compilers can generate a parallel object code by parallelizing a serial
source program and can generate an object code from OpenMP source program.

Visual KAP for OpenMP is a preprocessor which parallelizes the source program and
generates OpenMP code.

Four types of object codes listed below are executed on each machine.
- A serial object code which is generated by Forte or PGI compiler from the CFP2000

serial source program.
- A parallel object code which is parallelized and generated by Forte or PGI compiler

from the CFP2000 serial source program.
- A parallel object code which is generated by Forte or PGI compiler from OpenMP

code parallelized by Visual KAP from the CFP2000 serial source program.
A parallel object code which is generated by Forte or PGI compiler form OMP2001

parallelized source program.

2.4.3. Measurement results and property of each program

The highest parallel processing effect is obtained on Ultra80(2G memory). On
Ultra80(1G memory), each execution time is almost the same as on Ultra80 (2G
memory) except that each execution time is little bit longer than the time on
Ultra80(2G memory). On Power Edge 6400, excepting ‘apsi’ and ‘applu’ each execution
time shows the same parallel processing effect.

Based on these results, we can characterize each program as described below.
- swim, mgrid :

Parallelized CFP2000 code compiled by each compiler can get the parallel
processing effect nearly equivalent to that on OMP2001 program. It suggests that
these programs can be fully parallelized by loop-level parallelizing compiler and
are not appropriate for the evaluation of the multigrain parallelizing compiler.

- applu :
Parallelized CFP2000 code compiled by each compiler can get parallel

processing effect. It suggests that this program can be parallelized by loop-level
parallelizing compiler and is not appropriate for the evaluation of the multigrain
parallelizing compiler. It should be noted that we can not compare the execution

22

times of CFP2000 and OMP2001 directly, since CFP2000 and OMP2001 differ in
the dimension of the main array variables and the way of subroutine calls of this
program.

- apsi , wupwise :
Parallelized CFP2000 code compiled by each compiler can not get parallel

processing effect while parallel processing effect can be obtained on OMP2001
program. It suggests that that these programs can not be parallelized by
conventional parallelizing compilers at all and can be appropriate for the
evaluation of the multigrain parallelizing compiler.

For example, the fact that the both of the loop 100 and 200 in the subroutine
'muldoe' (and 'muldeo'), which have enough parallelism, can not be parallelized by
the conventional parallelizing compiler due to the subroutine calls in the loops
implies that the subroutine muldoe and muldeo are suitable for the evaluation of
the function to detect parallelism of loops which contain subroutine calls.

- sixtrack :
Although OMP2001 does not contain this program and we can not compare the

results, the fact that the parallel execution time becomes larger than the serial
execution time shows that this program is the hardest one to parallelize. It
suggests that that this program can not be parallelized by conventional
parallelizing compilers at all and can be appropriate for the evaluation of the
multigrain parallelizing compiler.

2.5. Analysis of programs in NAS benchmark suite

The goal of the advanced parallelizing compiler includes reducing execution time of a
program by extracting multigrain parallelism of the source program. Although there
are many works to investigate loop parallelism of benchmark programs, coarse grain
parallelism of those have not been well investigated. This is the reason of difficulty to
estimate performance of coarse grain parallelization and to select a benchmark
program for evaluation of multigrain parallelizing compiler. In order to solve this
problem, we investigated coarse grain parallelism of benchmark programs, which are
included in the NAS Parallel Benchmarks, and estimated performance of multigrain
parallelizing compiler for the NAS benchmark. Also, we discussed if the NAS
benchmark is appropriate for performance evaluation of our compiler.

2.5.1. Analysis of parallelism for benchmark programs

There are several works to analyze parallelism of benchmark programs. Eigenmann
et al. investigated loop level parallelism of the Perfect Benchmarks and estimated

23

performance of loop parallelization techniques for the benchmark. These results were
used to develop their new parallelizing compiler, Polaris. However, the results contain
only loop level parallelism and there are no results for coarse grain parallelism.

The NAS Parallel Benchmarks is developed as a benchmark program to evaluate
performance of a parallel computer. The suite includes program codes parallelized by
MPI or OpenMP. Thus, we can easily obtain information of loop level parallelism for
each program code. However, coarse grain parallelism of a program is not investigated.

2.5.2. Method for analysis

Our analysis of coarse grain parallelism is similar to that performed in our advanced
parallelizing compiler, that is, we decompose a source program into coarse grain tasks
called macrotasks and analyze data/control dependencies among the macrotasks. Here,
a macrotask is composed of a basic block, a loop, or a subroutine. The analyzed
parallelism is represented by the macrotask graph. Then, we fuse small macrotasks, or
a macrotask that has short execution time, into a larger macrotask in order to reduce
relative scheduling overhead at runtime. For a macrotask that includes a subroutine
call, we analyze coarse grain parallelism within the subroutine in hierarchical manner.
However, we performed this hierarchical analysis only for a subroutine that has long
execution time.

2.5.3. Results

We analyzed coarse grain parallelism for six serial programs that were included in
the NAS Parallel Benchmarks 2.3-Serial, CG, MG, FT, LU, BT and SP. The analysis
was performed manually, and we estimated performance of coarse grain parallelization
for the programs.

The analysis for the kernel benchmark programs shows that CG, MG and FT, have
no coarse grain parallelism that reduce execution time of the programs significantly.
The reason is that the kernel benchmark program represents computation for a
primary part of a real application program; thus, a number of macrotasks, or code size,
is small and a single macrotask, a loop or a subroutine, dominates execution time of
program. We conclude that the kernel benchmark programs have no coarse grain
parallelism that significantly reduce execution time of the programs while they have
loop level parallelism that may contribute to reduce the execution time.

Programs in the application benchmarks, LU, BT and SP, have similar
characteristics, that is, they have similar macrotask graphs. While a number of
macrotasks in the program is larger and structure of the graph is more complicated
compared with those of the kernel benchmark program, there is no coarse grain

24

parallelism that reduces execution time of the program significantly. The reason is that
a single particular subroutine spends about 90% of total execution time in the program.
We conclude that the application benchmark programs also have no coarse grain
parallelism that significantly reduces execution time of the programs.

2.5.4. Performance estimation for the loop aligned decomposition

The loop aligned decomposition is one of effective optimization methods in the
multigrain parallelization scheme. In this method, a compiler decomposes multiple
DOALL loops that access same array data into sub loops so that sequent sub loops
access the same region of the array data in order to minimizes communication
overhead. The method is mainly used for data localization on a multiprocessor system
where each processing unit has local memory. However, it is also effective to improve
advantage of a cache on a current SMP.

We analyzed the program code of SP and estimated performance of the loop aligned
decomposition for the program. The analysis is performed by manually finding loops
that may be effectively parallelized by the loop aligned decomposition and by
performing preliminary evaluation on SUN Ultra80, where the program code manually
applied the loop aligned decomposition is executed. The results shows that the loop
aligned decomposition reduced execution time by more than 10% compared
conventional loop parallelization for primary subroutine in SP. We conclude that SP
can be an appropriate benchmark program for our performance evaluation of advanced
parallelizing compiler. The other application benchmark programs, LU and BT are also
appropriate for our performance evaluation, because they have similar program
structures as SP.

2.6. Consideration of SPEC OMP2001 benchmark suite

The SPEC OMP2001 benchmark suite, which was written in OpenMP Application
Program Interface, consists of 11 scientific technical computation application programs.
It can be a set of highly tuned parallel programs written by users who know the
applications very well and the result can be the goal of our automatic parallelization.
We considered the result of SPEC OMP2001 benchmark and investigated what is
important for efficient parallel execution.

2.6.1. Evaluation

Using the Fujitsu Parallelnavi Fortran V1.0.2 and C/C++ V1.0.2 compilers, we
evaluated SPEC OMP2001 M-size benchmark suite on PRIMEPOWER2000, a SMP
computation server of Fujitsu’s. The result of each application program can be
distinguished as follows:

25

- Excellent scaling
wupwise, swim, applu, apsi, and gafort

- Good scaling up to 64 CPU’s
mgrid, equake, and art

- Poor scaling
galgel, fma3d, and ammp

2.6.2. Analysis of the result

‘Apsi’, which provided finally high performance, was not scalable in the first trial. In
‘apsi’, large arrays are allocated frequently at the top of subroutines in the dynamic
extent of the parallel region. Such allocation performed in parallel often causes partial
serialization and lock conflict.

‘Galgel’ is one of the hardest benchmark in the suite to get high performance. It
includes many PARALLEL DO blocks that enclose only a few assignment statements
without nested-DO loops. This kind of PARALLEL DO block cannot be executed
effectively because the cost of thread fork/join is relatively high compared to the
parallel computation inside the block. Therefore, a naive implementation could cause
even lower performance than the serial execution.

2.6.3. Contribution to automatic parallelization

All through the SPEC OMP2001 benchmarks, we met performance problems related
to the memory allocation. In the Fortran90 implementation, array expressions, array
assignments, and WHERE statements cause dynamic allocation generated by the
compiler. For high performance, all of these allocations must be reduced and handled in
parallel with the least number of conflicts between the threads. As mentioned in the
example of ‘apsi’, avoiding memory allocation gives the best results.
As shown in ‘galgel’ and ‘equake’, the OpenMP program sometimes contains many
PARALLEL DO/FOR directive blocks enclosing a small amount of computation. We
would like to recommend a programming style in which many DO/FOR directive blocks
are enclosed in a large PARALLEL directive block. Thus the number of thread fork/join
can be reduced as much as possible.

26

Ⅲ. Report of International Cooperation Committee,
Lists of Accomplishment and Other Reference Materials

1. Report of International Cooperation Committee

The Advanced Parallelizing Compiler project has been established International
Cooperation Committee containing International Advisory Board with world leading
researchers as a new trial for self-assessments of project target, research &
development accomplishment, international cooperation and dispatching project
accomplishment to the world. Members of International Advisory Board are listed
below:

Professor David A. Padua (University of Illinois at Urbana-Champaign)
Professor Monica S. Lam (Stanford University)
Professor Rudolf Eigenmann (Purdue University)
Professor Francois Irigoin (Ecole des Mines de Paris).

 The first International Cooperation Committee was held in Waseda University in
September 2001 as the attached agenda.
 In the committee, purpose of the project, numerical target, R&D plan and R&D
accomplishment for the first year were introduced to the International Advisory Board
members.

With the related discussion and technical presentations by the board members,
objective assessments for the project by the board members are given.

The followings are overview of the assessments.
・The numerical target that tries to double the performance of the parallelizing
 compiler compared with commercial loop parallelizing compilers available on the

market in September 2001, or at the project starting time point, is very ambitious
value considering that performance improvement by automatic parallelizing
compilers for past ten years was about several ten percents. It would be important
to focus on development of compilation technologies themselves and analysis of
their performance rather than chasing the numerical value.
・Multigrain parallel processing, especially coarse grain task parallel processing,

and affine partitioning in this project are interesting and will be world leading
technologies if they are successfully completed.
・How unify results by competent competitive companies is a very difficult problem.
・Work is proceeding as scheduled and there are already impressive performance

results for the coarse grain task parallel processing.
・Research on automatic parallelizing compilers is important and difficult. Long-

27

term research and development is desired.
The following is the agenda of the first International Cooperation Committee.

First Advanced Parallelizing Compiler Technology
International Cooperation Committee（Agenda）

1. Date and time:
September 5, 2001 10:00～18:00
September 6, 2001 10:00～17:45

2. Venue:
 School of Science and Engineering,Waseda University
 (September 5,10:00-13:00 September 6,10:00-14:45)
 Building No.55-N 2F Conference Room
 (September 5,13:00-18:00 September 6,14:45-17:45)
 Building No.62 01-07 Conference Room
3. Meeting schedule
September 5 (Wednesday)
 10:00～10:10 Greeting(Izumi, METI)

10:10～10:40 Summary of the APC Project (Professor Kasahara, Project Leader)
10:40～10:50 APC R&D Organization (Yamana)
10:50～11:20 The Compiler Technology of Advanced Parallelizing Compiler (Hotta)
11:20～11:40 The Performance Evaluation of Advanced Parallelinzing Compiler

(Anzaki)
11:40～12:00 Deliberations on the project profile
13:00～13:30 Medium Grain Level Parallelization Technique(Fujitsu)
13:30～14:00 Automatic Data Distribution Method using First Touch Control for

Distributed Shared Memory Multiprocessors(Hitachi)
14:30～14:45 Coffee Break
14:45～16:15 Past and Future Parallelizing Compilers (Prof. Padua)
16:30～18:00 Interprocedual Analyses and Compilers (Prof. Irigoin)

September 6 (Thursday)
10:00～11:30 Improving Parallelism and Locality using Affine Partitioning

 (Prof. Lam)
11:30～13:00 Lunch Time
13:00～14:30 Performance Evaluation of Parallelizing Compilers (Prof. Eigenmann)
14:45～16:15 Deliberations on the project in general Comments on APC project

targets, plan, and progress status, assessment system, coordination
with other countries, final symposium

16:30～17:30 Comments from board members
(entry of evaluation and comment sheet)

17:30～17:45 Comments from Advisory Board Chairman

28

2. Lists of Accomplishment and Other Reference Materials

2.1. Fujitsu Ltd.

（1）Eiji YAMANAKA, Hidetoshi IWASHITA, Kohichiro HOTTA: “Implementation of
OpenMP on Parallel Process Environment”, 63rd National Convention of IPSJ
Volume 1.

（2）Akira ASATO, Motoyuki KAWABA, Toshihiro Ozawa: "A multiprocessor system
simulator for evaluation of parallelizing compiler", 63rd NationalConvention of
IPSJ Volume 1.

（3）Hidetoshi IWASHITA, Eiji YAMANAKA, Kohichiro HOTTA: “A Study of OpenMP
Programming and the Language Processor -- An Evaluation on Fujitsu
PRIMEPOWER2000”, IPSJ SIG Notes, Vol.2002, No.9, pp.61-66 (2002.2)

（4）Akira Hosoi, Toshihiro Ozawa: “The Evaluation of the medium grain level
Parallelization Technique”, IPSJ SIG Notes, Vol.2002, No.9, pp.49-54 (2002.2)

（5）Hidetoshi Iwashita， Eiji Yamanaka， Naoki Sueyasu， Matthijs van Waveren，
Kenichi Miura, ``The SPEC OMP2001 Benchmark on the Fujitsu PRIMEPOWER
System’’, Third European Workshop on OpenMP (EWOMP2001), Barcelona， Spain，
September

2.2. Hitachi, Ltd.

（Predicated Data-Flow Analysis Technique）
・Anual Convention（1）
（ 1）Motoyasu Takabatake， ``Evaluation of Predicated Dataflow Analysis on

Automatic Parallelizing Compiler'', Proc. 64th Annual Convention IPSJ 5W-05，
Mar., 2002.
（ Automatic Data Distribution Technology for Distributed Shared-Memory

Multiprocessors）
・Papers（1）
（ 2） Takashi Hirooka， Hiroshi Ohta， Takayoshi Iitsuka, ``Automatic Data

Distribution Method using First Touch Control for Distributed Shared Memory
Multiprocessors", Proc． of 14th International Workshop on Languages and
Compilers for Parallel Computing (LCPC2001), Aug., 2001.

（Program Visualization Technique）
・Technical Reports（1）
（ 3）Makoto Satoh, Kiyomi Wada, ``Interprocedural Data-dependence Locating

Method'', IPSJ, 2002-ARC-146-8, Feb., 2002.

29

2.3. Waseda University, Kasahara laboratory

Infrastructure Technology for Multi-grain Parallelism Exploitation Journal（2）:
（1）Keiji Kimura, Takayuki Kato, Hironori Kasahara, ``Evaluation of Processor Core

Architecture for Single Chip Multiprocessor with Near Fine Grain Parallel
Processing'', Trans. of IPSJ, Vol. 42, No. 4, Apr., 2001.

（2）Hironori Kasahara, Motoki Obata, Kazuhisa Ishizaka, ``Coarse Grain Task
Parallel Processing on a Shared Memory Multiprocessor System'', Trans. of IPSJ,
Vol. 42, No. 4, Apr., 2001.

International Conference（3）:
（3）Motoki Obata, Kazuhisa Ishizaka, Hironori Kasahara, ``Automatic Coarse Grain

Task Parallel Processing Using OSCAR Multigrain Parallelizing Compiler'', Ninth
International Workshop on Compilers for Parallel Computers(CPC 2001),
Edinburgh, Scotland UK, pp.173-182, Jun., 2001.

（4）Akimasa Yoshida, Satoshi Yagi, Hironori Kasahara, ``A Data Localization Scheme
for Coarse Grain Task Parallel Processing on Shared Memory Multiprocessors'',
Proc. of IEEE International Workshop on Advanced Compiler Technology for High
Performance and Embedded Systems, pp.111-118, Jul.2001.

（5）Kazuhisa Ishizaka, Motoki Obata, Hironori Kasahara, ``Coarse Grain Task
Parallel Processing with Cache Optimization on Shared Memory Multiprocessor'',
Proc. of 14th International Workshop on Languages and Compilers for Parallel
Computing (LCPC2001), Aug., 2001.

Technical Reports（6）:
（6）Takeshi Kodaka, Naohisa Miyashita, Keiji Kimura, Hironori Kasahara, ``Near

Fine Grain Parallel Processing on Multimedia Application for Single Chip
Multiprocessor'', Technical Report of IPSJ, ARC2001-140-11, Aug., 2001.

（7）Takayuki Uchida, Takechi Kodaka, Keiji Kimura, Hironori Kasahara, ``Multigrain
Parallel Processing on Single Chip Multiprocessor'' Technical Report of IPSJ,
ARC2002-146-3, Feb., 2002.

（8）Takeshi Kodaka, Takayuki Uchida, Keiji Kimura, Hironori Kasahara, ``Multigrain
Parallel Processing for JPEG Encoding Program on an OSCAR type Single Chip
Multiprocessor'' Technical Report of IPSJ, ARC2002-146-4, Feb., 2002

（9）Motoki Obata, Kazuhisa Ishizaka, Hiroki Kaminaga, Hirofumi Nakano, Akimasa
Yoshida, Hironori Kasahara, ``Coarse Grain Task Parallel Processing on
Commercial SMPs'', Technical Report of IPSJ, ARC2002-146-10, Feb., 2002.

（10）Shin-ya Kumazawa, Kazuhisa Ishizaka, Motoki Obata, Hironori Kasahara, ``An
Analysis-time Procedure Inlining and Flexible Cloning Scheme for Coarse-grain

30

Automatic Parallelizing Compilation'', Technical Report of IPSJ, ARC, Mar., 2002.
（11）Satoshi Yagi, Hiroki Itagaki, Hirofumi Nakano, Kazuhisa Ishizaka, Motoki Obata,

Akimasa Yoshida, Hironori Kasahara, ``A Macrotask selection technique for
Data-Localization Scheme on Shared-memory Multi-Processor'', Technical Report
of IPSJ, ARC, Mar., 2002.

Scheduling Technology
Journal（1）:
（12）Takao Tobita, Hironori Kasahara, ``A standard task graph set for fair evaluation

of multiprocessor scheduling algorithms'', Journal of scheduing, John Wiley & Sons
Ltd, 2002.

International Conference（1）:
（13）Hirofumi Nakano, Kazuhisa Ishizaka, Motoki Obata, Keiji Kimura, Hironori

Kasahara, ``Static Coarse Grain Task Scheduling with Cache Optimization Using
OpenMP'', WOMPEI, 2002.

Technical Reports（1）:
（14）Hirofumi Nakano, Kazuhisa Ishizaka, Motoki Obata, Keiji Kimura, Hironori

Kasahara, ``A Static Scheduling Scheme for Coarse Grain Tasks considering Cache
Optimization on SMP'', Technical Report of IPSJ, ARC2001-140-12, Aug., 2001.

2.4. Waseda University, YAMANA Laboratory.

（1）Fumiko SAITO, Hayato YAMANA: “The Latest Technical Trends in Speculative
Execution”, IPSJ SIG Notes, Vol.2001, No.116, pp.67-72 (2001.11)

（2）Shunsuke ISHIKAWA，Hayato YAMANA： “An Efficient Speculative Execution
Scheme for Loops”, IPSJ SIG Notes, Vol.2002, 2001-HPC-89 (to appear) (2002.03)

2.5. Toho University, Yoshida Laboratory.

・International Conference
（1）A．Yoshida， S．Yagi，H．Kasahara: "A Data Localization Scheme for Coarse Grain

Task Parallel Processing on Shared Memory Multiprocessors"，Proc． of IEEE
International Workshop on Advanced Compiler Technology for High Performance
and Embedded Systems， pp．111-118， Jul．2001．

・Symposium with Review
（2） A. Yoshida: "Dynamic Scheduling Scheme with Overlapping Assignment for

Coarse-Grain Task Parallel Processing", Joint Symposium on Parallel Processing
JSPP2001, pp.351-358, Jun. 2001.

・Technical Report
（3） S. Yagi, H. Itagaki, H. Nakano, K. Ishizaka, M. Obata, A. Yoshida, H. Kasahara:

31

"A Macrotask Selection Technique for Data-Localization Scheme on
Shared-Memory Multi-Processor"，SIG Notes of IPSJ, 2002-ARC-147-34, Mar.
2002.

・Annual Convention
（4） T. Aramaki, A. Yoshida, "Multi-Level Task Scheduling for Coarse Grain Task

Parallel Processing ", Proc. 63rd Annual Convention IPSJ, 2L-5, Sep. 2001.

2.6. Tokyo Institute of Technology

（1）Yoshiaki Ishii, Kento Aida, ``Analysis for Coarse Grain Parallelism of NAS Parallel
Benchmarks,'' IPSJ SIG Notes, ARC (2002.03)

2.7. The University of Electro-Communications

（1）Hiroki Honda," Parallelisms in Programs Used for Evaluation of Multi-Grain
Parallel Processing”，IEICE 2002 General Conference, D-6-4, Mar., 2002.

－ 禁無断転載 －

アドバンスト並列化コンパイラ技術

 発 行 平成１４年３月
 発行所 財団法人日本情報処理開発協会
 〒105‐0011 東京都港区芝公園 3‐5‐8
 機会振興会館内
 電 話 03‐3432‐9390
 ＦＡＸ 03‐3431‐4324

	Advanced Parallelizing Compiler Technology

2001 Annual Report
	Introduction
	Contents
	I. .Development of Advanced Parallelizing Compiler Technology
	Development of Automatic Multi-Grain Parallelizing Compiler Tec...
	Multi-Grain Parallelism Exploitation Technology
	Infrastructure Technology for Multi-Grain Parallelism Exploitat...
	Medium-Grain Parallelism Exploitation Technology：富士通(25)
	Coarse-Grain Parallelism Exploitation Technology：富士通(15)
	Technique of Analyzing Interprocedural Multi-Grain Parallelism：...

	Data Dependency Analysis Technology
	Interprocedural Data Dependency Analysis Technology：富士通(10)
	Predicated Data-Flow Analysis Technique：日立(10)
	Run-Time Data Dependency Analysis Technique：日立(10)
	Parallelism Analysis Techniques for Fortran90：日立(4)

	Automatic Data Distribution Technology
	Automatic Data Distribution Technology for Distributed Shared-M...
	Data Locality Optimization Technology：東邦大(8)

	Speculative Execution Technology
	Speculation Techniques for Medium-Grain Tasks for Multi-Grain P...
	Speculative Execution Technology for Coarse-Grain Tasks：富士通(10)

	Scheduling Technology：笠原研(15)
	Extensions of a parallel programming language
	Interface for Parallelization Ratio Tuning
	Interface for Parallel Execution Efficiency Tuning：富士通(20)

	Development of Tuning Technology for Parallel Processing
	Program Visualization Technique：日立(15)
	Techniques for Profiling and Utilizing Run-Time Information：日立(...
	Feedback-Directed Selection Technique of Compiler Directives：日立...

	Ⅱ.Development of performance evaluation for parallelizing compilers
	Development of evaluation methods for individual functions
	Development of an overall evaluation method
	Choice of benchmark programs
	Choice of compile options
	Setting and confirming the evaluation environment, and prelimin...
	Analysis of SPEC benchmarks
	Target benchmark programs
	Measurement environment
	
	Sun Ultra80, 4CPU(450MHz, 4MB-L2, 1GB memory), SunOS5.8 7/01
	Sun Ultra80, 4CPU(450MHz, 4MB-L2, 2GB memory), SunOS5.8 7/01
	DELL Power Edge 6400, 4CPU(700MHz, 2MB-L2, 512MB memory),

	Measurement results and property of each program

	Analysis of programs in NAS benchmark suite
	Analysis of parallelism for benchmark programs
	Method for analysis
	Results
	Performance estimation for the loop aligned decomposition

	Consideration of SPEC OMP2001 benchmark suite
	Evaluation
	Analysis of the result
	Contribution to automatic parallelization

	Ⅲ.Report of International Cooperation Committee,Lists of Accomplishment and Other Reference Materials
	Report of International Cooperation Committee
	Lists of Accomplishment and Other Reference Materials
	Fujitsu Ltd.
	Hitachi, Ltd.
	Waseda University, Kasahara laboratory
	Waseda University, YAMANA Laboratory.
	Toho University, Yoshida Laboratory.
	Tokyo Institute of Technology
	The University of Electro-Communications

