
⑬ Feedback-Directed Selection Techniques of
Compiler Directives

Features and Structure of Our Tool

Reduction Method of the Combination of Loops

Kiyomi WADA1,2, Makoto SATOH1,2 , Keiko MOTOKAWA1,2
1 APC Technology Group 2 Hitachi, Ltd.

WS SMP

OpenMP

SeqProg

AnaRes
Loop

Trans.

Directives

Directive
Decision

PC

Profile

SeqProg
Compile
& Exec.

Use of
ProfileJMP(*1)

Send
計画.txt
計画.txt

Plan

Apply Fractional
Factorial Design

Compile
& Exec.

I/F

Send

ExecTime

For Each
Loop

I/F Loop
Trans.Start

Send

OpenMPParallelization,
Interchange,
Tilling

SeqProg AnaRes

WPP(*2)StartI/F

(*2) WPP:automatic parallelizing module(*1)JMP(TM):a tool creating Experiment Design

JMP(TM) is a trademark of SAS Institute Inc., in U.S.

Step1: On one trial, the same optimization is applied to all nested loops
and the execution time of each nested loop is measured.

Step2: After all trials, the best optimization is selected for each nested loop.

3. Reduction of the number of target loops
Profile information is used.

2. Reduction of the combination of loops
See below.

4. Reduction of the number of target optimizations
Parallelization, Interchange, Tiling, and Unrolling

1. Reduction of the combination of optimizations
Fractional Factorial Design is applied.

Effective Performance

1980 1990 2000 year

Theoretical
maximum
performance

To develop an interactive, platform-free parallelizing
tuning tool that accelerates performance.

Project Goal
To boost an effective performance of applications.

Problem
Compiler's static analysis is not enough
to obtain maximal performance.

Challenge

A

B

C

Source
Program

OpenMP
Program

JMP(*1)

• Parallelization
• Interchange
• Tilling

• Unrolling

OpenMP
Program

1st phase

2nd phase

Features

Whole Structure

Structure of 1st Phase

the exec.time
is measured.

CA BStep 1 Step 2
insert UNR(1..8)(*3)

just before all loops

・・・

T1=CLOCK
*UNR(1)

DO 10 I=1,M
…

10 CONTINUE
T1=CLOCK-T1
T2=CLOCK

*UNR(1)
DO 20 J=1,N

…
20 CONTINUE
T2=CLOCK-T1

T1=CLOCK
*UNR(8)

DO 10 I=1,M
…

10 CONTINUE
T1=CLOCK-T1
T2=CLOCK

*UNR(8)
DO 20 J=1,N

…
20 CONTINUE
T2=CLOCK-T1

Optimized Program

*UNR(2)
DO 10 I=1,M

…
10 CONTINUE
*UNR(6)

DO 20 J=1,N
…

20 CONTINUE

the best optimization
is selected.

Source Program

DO 10 I=1,M
…

10 CONTINUE

DO 20 J=1,N
…

20 CONTINUE

control flow data flow access

Motive of This Research

Purpose of This Research

For obtaining the optimal code, we must try a large
number of tuning parameters:
• The combination of optimizations

and their application order,
• The parameters of each optimization.

To develop a tool that enables users to select the
number of trials and the performance of their codes
(though there exists a trade-off between them).

(*3) UNR(n) : n times unrolling directive.

