
⑪A Speculation Technique for Loops
Containing Loop Carried Dependence

Shunsuke ISHIKAWA1,2, Fumiko SAITO1,2, Hayato YAMANA1,2

(1 APC Technology Group 2Waseda University)

Ａ４.PPT Ａ４.PPT Ａ４.PPT

Ａ４.PPT Ａ４.PPT Ａ４.PPT

Ａ４.PPT Ａ４.PPT Ａ４.PPT

Ａ４.PPT Ａ４.PPT Ａ４.PPT

Ａ４.PPT Ａ４.PPT Ａ４.PPT

1

Contents
Introduction
Overview of the Proposed Technique

Where to initiate the speculation ?
How to calculate the speculation success ratio ?
The proposed scheme v.s. DoAcross model

Execution Model
Evaluation

129.compress (SPEC CINT95)
Conclusion

3

Introduction
A number of loop parallelization techniques have
been proposed. However, there is no effective
technique to parallelize loops contain Loop Carried
Dependence(LCD).

Generally, the speculative execution techniques
parallelize these loops.

Purpose of this presentation is to propose a
speedup technique to speculate loops containing
LCD.

4

Do i =1,n then

D = C; --- S1

A(i) = B(func()); --- S2

E = F; --- S3

B(func()) = C(i) --- S4

J = K; --- S5

end do LCD

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

LCD Delay
S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

SE Delay

Speculative Initiation
Line (SIL)

Apply Data Speculation to LCDNormal (Gurantee LCD)

To speedup execution time,

1. Apply the Data Speculation to
B[func()] causing
LoopCarriedDependence (LCD) .

2. Initiate the next iteration quickly.

Overview of the Proposed Technique

Speed Up !!

Guess B[func()] Value

5

Overview of the Proposed Technique (2)

After applying data value speculation,
Iteration initiate the next iteration at SIL.
This execution model is like the
“DoAcross” execution model.

N=1
N=2

N=3 N=N-2
N=N-1

N=N

Apply data value speculation
to all the variables referenced
in the next iteration repeatedlySpeculative

Initiation
Line(SIL)

6

Where to Initiate the
Speculation ?

S1
S2
S3
S4
S5

Line1

Iteration N

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

Line2
Line3
Line4

Iteration N+1

SuccessRatioLineSE Delay

99.9%Line44 line
55.2%Line33 line
30.3%Line21 line
10.5%Line10 line

Speed Up !

Speed Up !

Select the most effective SIL
by simulating the execution
time considering SE Delay,
Success Ratio, Overhead.

7

How to Calculate the Success Ratio ?
List the all parameters required in calculating
the Speculation Success Ratio.

Execution probability of every control flow.
Success Ratio of data value speculation to the
variables causing LCD for every control flow.

Data value speculation schemes are LastValue,
StrideValue.

All required parameters are detected by the
REX System automatically.

8

Iteration N
(Part1)

Thread1

Iteration N
(Part2) Iteration N+1

(Part1)

Flush +
Wakeup Thread

Iteration N+1
(Part2)

Flush +
Wakeup Thread

OVERHEAD

Flush Overhead +
SectionWakeUp

Initiate Speculation
Line
Real Initiate Line

Conventional DoAcross
Execution Model

Thread2

Sleep

Sleep

Data Dependence

9

Execution Model of the
Proposed Technique

Iteration N
(Part1)

Thread1

Iteration N+1
(Part1)

Iteration N+2
(Part1)

Flush

Flush

Values referenced
in Iteration N

Thread2

Iteration N
(Part2)

Iteration N+1
(Part2)Push Tasks

(Data Value Speculation)

Proposed execution model hides the
WakeupThread overhead .

Values referenced
in Iteration N+1

Always checking Task
Queue, if exists, pop and
execute Tasks.

Speculative
Task Queue

10

How to check whether
the speculation is
success or fail ?Iteration N (P1)

Iteration N+K(P1)
Iteration N (P2)

Iteration N+K (P2)

Iteration N+K+1(P1)

Iteration N+2K(P1)
Iteration N+K+1(P2)

Iteration N+2K (P2)

Success

Iteration N (P1)

Iteration N+K (P1)

Iteration N (P2)

Iteration N+K (P2)

Fail Restore the variables

Execute K Iterations without
checking to reduce check
overhead.

Check whether the Speculative
Execution is Success ?

Store the valiables for book-keeping

Store the valiables for book-keeping

11

Evaluation
Confirm the Proposed Technique Efficiency
by applying to 129.compress (SPEC　CINT95)

Environments
Machine : IBM pSeries690 RegttaH

Power4(1.1GHz) ×8　(16Processors)
Compiler : xlf_r -O5 –qsmp=omp
Parallelize Directive : OpenMP 1.1
Environment Variables :

AIX_THREAD_SCOPE=S
SPINLOOPTIME=0:YIELDLOOPTIME=0 12

20 call getbyte(c)

if(htab(i+1).eq.fcode) then

ent = codetab(i+1)

if(htab(i+1).eq.fcode) then

ent = codetab(i+1)

call output(ent)

ent = c

if(free_ent.lt.maxmaxcode) then

codetab(i+1)=free_ent

htab(i+1)=fcode

else if(…) then

end if

Iteration (Part1)

Iteration (Part2){ … = free_ent }

call cl_block() {

free_ent = … }

Branch
Probability

99.9%

0.1%

How to apply the
Proposed Technique
to the Main Loop of
129.Compress ?

LCD

ISL

DoAcross
13

Comparison of the Execution Time
The overhead produced by operating threads is
much longer than the average iteration execution
time of compress.

The initiation and the termination overhead of SECTION.
Flush() and Thread Synchronization Overhead

Execution Time Compare

1.494 1.605

0.731

0

0.5

1

1.5

2

2.5

Speculative
Compress

Normal Compress

E
xe

c
u
ti
o
n
 T

im
e
 [

 S
e
c
o
n
d
s

]

Overhead produced by operating
threads

Execution Time without thread
overhead

14

Our Understanding
Resulted from Experimental Results

If one Iteration average overhead produced
by operating threads is larger than average
execution time of one Iteration, Speculative
Execution do not work effectively.

Average Execution Time of one iteration : T

Average Overhead produced by operation threads : O

Theoretical Max Speed Up Rate : R

O is required to be T/R + O < T

15

Confirmation of the Efficiency of Proposed Technique

Theoretical Max Speed Up Rate

Real Speed Up Rate

Result of Compress Speed Up

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

0.1146 0.1163 1.2606 5.8879 11.6666

Average Execution time of one iteration [micro seconds]

S
pe

e
d
u
p
 R

at
e

16

Conclusion
We propose the technique to apply the speculative
execution alternatively only to the portion expected
to be speeduped effectively, and confirm its
effectiveness by applying the technique to existing
benchmarks.

The overhead produced by operating threads is very
large. Architectural operating thread optimization is
highly required.

