/i
/Advanced

Parallelizing

"/ Compiler

Background

Problem and Purpose
Predicated Data-Flow Analysis
Implementation

Evaluation

Conclusion

*2.2 Problem statement

= Conventional data-flow analysis

IF (X>5) THEN = Reference regions for Array A
A1) = A(l)... in this loop are approximated.

E_’\‘:DL'EI) = Mod A(2:N+1)

ENDDO = Use A(1:N)

approximation: l-

= This is always modified = This loop has loop-carried

dependence.

So, this loop is serialized.

DO I=1,N

= Sample program
if X<=5, the loop is
parallelizable, because
array A is used only.

4.1 Predicated reference
region analysis

= Kind of reference regions:

Motoyasu TAKABATAKE? 2

DO I=1,N USE | region of arrays that may be used

IF (X>5) THEN EUSE | region of arrays that may have
A(l+1) = A(l) ... upward-exposed use

ENDIF MOD | region of arrays that may be defined

= A(l) KILL | region of arrays that must be defined

ENDDO

= Predicated reference region for
Predicate:X>5 is added the array A at I-th iteration:

to reference region:A(1+1) USE: A[l]

ESUE: A[l]

MOD: ~X>5",A[l+1]
KILL: ~X>57,A[l1+1]

i 4.3 Multi-versioning (pattern)

= Generated code chooses one loop from the following
three loops at runtime.
= A parallel loop without private variables,
= A parallel loop with private variables,
= A sequential loop.

i Execution on Ogirin® 2000

——Gl

o M v

1 3 5 7 9 11 13 15 17 19 21 8 25 27 29 31
Num of Proc.

* 1. Background

= Parallelization of loops is very effective in
scientific applications, because most of those
loops consume much execution time.

= S0, advanced data-flow analysis, which
extracts much parallelism from those loops, is
very important.

3. Predicated Data-Flow
iAnalysis

= Features

= Array reference regions includes “IF”
conditions.

= Parallelization condition is computed using
predicated reference regions.

= Multi-versioned code, which chooses one of
parallel or sequential loops at runtime, are
generated using those condition.

4.2 Computation of parallelization
* condition (definition)

= Conditional expressions for (simple) loop parallelization
= MOD(1:1-1) n EUSE(l) =@ &
USE(1:1-1) n MOD(l) =@ &
MOD(1:1-1) n MOD(l) = @
= A conditional expression for loop parallelization using
privatization
= MOD(1:1-1) n EUSE(l) = @

MOD(1:1-1) := MODI[i]
i [1:-1]

IF {X<=5) THEN
1
DO I=1,N .$OI3I:fEALLEL DO
IF (X>5) THEN IF (X>5) THEN
A(l+1) = A(D)... A(1+1) = A(l)...
(1+1) M - ENDIF Parallel loop
.= A(l)
ENDDO
ISOMP END PARALLEL
ELSE
Input program DO I=1,N
. . IF (X>5) THEN
Parallelization condition A(I+1) = A(l).. | Sequential loop
ENDIF
.= A(l)
ENDDO

ENDIF

Output program

i Result of Execution

The program to which our method is applied
= ran 21 times faster than the sequential one
on 31 processors and

= ran 4.3 times faster than the program
compiled by SGI® parallelizing compiler.

Development of Predicated Data-flow Analysis

1 APC Technology Group 2 Hitachi, Ltd.

i 2.1 Problem and Purpose

= Features of conventional data-flow analysis
= The reference region of each array is calculated.
= The result is used to find the parallelizability of each loop.
= Problem
= When an “IF” statement exists in a loop, the data-flow
analysis approximates the region referenced in the loop;
the compiler may serialize the loop which can be executed
in parallel actually.
= Purpose
= To parallelize the loop including “IF” statements that affect
the parallelizability of the loop.

i 4. Implementation

WPP | Syntax analysis |
;

Control flow analysis
¥

FORTRAN
Program |:>

Predicated reference
region analysis

¥
Loop parallelization
‘ Computation of

arallelization condition
OpenMP p ¢
program <::| \ Multi-versioning |
¥

Code generation

WPP: Whole Program Parallelizer
(Inter-procedural parallelizing module) 4

4.2 Computation of parallelization

i condition (example)

= Conditional expression for MOD(1:1-1) n EUSE(l) = ¢

I-th iteration 1~(1-1)-th iteration
ESUE(I): A[l]
MOD(l): “X>57,A[1+1]

MOD(1:1-1): “X>5",A[2:1]

MOD(1:1-1) n EUSE(I)
“X>5",A[2:1] n A[l]
“X=5" A[l] = @
“X<=5" 7—4 Parallelization condition X<=5

5. Evaluation

program main subroutine sub(a,b,i,n,c) program main
real a(n), b(n) Real a(n), b(n)
real a(n), b(n) call init(a,b,n)

(;::[;?lt&a),tcy,n) if (c<1) then read(*,*) ¢

4o ien b(i) = b(i) + a(i) If (c<1) then
call ;ub(a binc !$omp parallel do private(i)
catsw@bing | "oy yyeag o i

en call sub(a,b,i,n,c)

stop enddo
end
else

N O doi=1,n
arget loop call sub(a,b,1,n,c)

Target loop calls to subroutine “sub” enddo
involving ~ “IF” statement, whose || S©P
branch target has loop-carried | L€
dependence.

Input program

i 6. Conclusion

= We have implemented the predicated
data-flow analysis in our module.

= Initial evaluation shows the effectiveness
of the predicated data-flow analysis.

Output program

SGI and Origin are registered trademarks in the United States and/or other countries worldwide.

