
1

Contents
1. Background
2. Problem and Purpose
3. Predicated Data-Flow Analysis
4. Implementation
5. Evaluation
6. Conclusion

2

1. Background
Parallelization of loops is very effective in
scientific applications, because most of those
loops consume much execution time.
So, advanced data-flow analysis, which
extracts much parallelism from those loops, is
very important.

3

2.1 Problem and Purpose
Features of conventional data-flow analysis

The reference region of each array is calculated.
The result is used to find the parallelizability of each loop.

Problem
When an “IF” statement exists in a loop, the data-flow
analysis approximates the region referenced in the loop;
the compiler may serialize the loop which can be executed
in parallel actually.

Purpose
To parallelize the loop including “IF” statements that affect
the parallelizability of the loop.

4

2.2 Problem statement
Conventional data-flow analysis

Reference regions for Array A
in this loop are approximated.

Mod： A(2:N+1)
Use： A(1:N)

This loop has loop-carried
dependence.
So, this loop is serialized.

DO I=1,N
IF (X>5) THEN

A(I+1) = A(I)…
ENDIF
…= A(I)

ENDDO

approximation:
= This is always modified

Sample program：

if X<=5, the loop is
parallelizable, because
array A is used only.

5

3. Predicated Data-Flow
Analysis
Features

Array reference regions includes “IF”
conditions.
Parallelization condition is computed using
predicated reference regions.
Multi-versioned code, which chooses one of
parallel or sequential loops at runtime, are
generated using those condition.

6

4. Implementation

FORTRAN
Program

OpenMP
program

Syntax analysis

Control flow analysis

Code generation

Data-flow analysis

Loop parallelization

WPP

WPP: Whole Program Parallelizer
(Inter-procedural parallelizing module)

Computation of
parallelization condition

Multi-versioning

Predicated reference
region analysis

7

4.1 Predicated reference
region analysis

DO I=1,N
IF (X>5) THEN

A(I+1) = A(I) …
ENDIF
…= A(I)

ENDDO

Predicate:X>5 is added
to reference region:A(I+1)

Predicated reference region for
the array A at I-th iteration:

region of arrays that must be definedKILL

region of arrays that may be defined MOD

region of arrays that may have
upward-exposed use

EUSE

region of arrays that may be usedUSE

USE: A[I]
ESUE: A[I]
MOD: `X>5`,A[I+1]
KILL: `X>5`,A[I+1]

Kind of reference regions:

8

4.2 Computation of parallelization
condition (definition)
Conditional expressions for (simple) loop parallelization

MOD(1:I-1) ∩ EUSE(I) = φ &
USE(1:I-1) ∩ MOD(I) = φ &
MOD(1:I-1) ∩ MOD(I) = φ

A conditional expression for loop parallelization using
privatization

MOD(1:I-1) ∩ EUSE(I) = φ

MOD(1:I-1) := ∪ MOD[i]
　　　　　　　　 i∈[1:I-1]

9

4.2 Computation of parallelization
condition (example)

Conditional expression for MOD(1:I-1) ∩ EUSE(I) = φ

I-th iteration：
ESUE(I): A[I]
MOD(I): `X>5`,A[I+1]

1~(I-1)-th iteration：

MOD(1:I-1): `X>5`,A[2:I]

MOD(1:I-1) ∩ EUSE(I)
= `X>5`,A[2:I] ∩ A[I]
= `X>5` ,A[I] = φ
⇒ `X<=5` Parallelization condition：X<=5

10

4.3 Multi-versioning (pattern)
Generated code chooses one loop from the following
three loops at runtime.

A parallel loop without private variables,
A parallel loop with private variables,
A sequential loop.

11

4.3 Multi-versioning (example)

DO I=1,N
IF (X>5) THEN

A(I+1) = A(I)…
ENDIF
…= A(I)

ENDDO

IF (X<=5) THEN
!$OMP PARALLEL DO

DO I=1,N
IF (X>5) THEN

A(I+1) = A(I)…
ENDIF
…= A(I)

ENDDO
!$OMP END PARALLEL DO
ELSE

DO I=1,N
IF (X>5) THEN

A(I+1) = A(I)…
ENDIF
…= A(I)

ENDDO
ENDIF

Sequential loop

Parallel loop

Parallelization condition

Input program

Output program
12

5. Evaluation
program main
real a(n), b(n)
call init(a,b,n)
read(*,*) c
do i=1,n

call sub(a,b,i,n,c)
enddo
stop
end

Input program Output program

subroutine sub(a,b,i,n,c)
real a(n), b(n)
…
if (c<1) then

b(i) = b(i) + a(i)
else

b(i) = b(i-1)+a(i)
endif
return
end

program main
Real a(n), b(n)
call init(a,b,n)
read(*,*) c
If (c<1) then
!$omp parallel do private(i)

do i=1,n
call sub(a,b,i,n,c)

enddo
else

do i=1,n
call sub(a,b,I,n,c)

enddo
stop
end

Target loop

Target loop calls to subroutine “sub”
involving “IF” statement, whose
branch target has loop-carried
dependence.

13

Execution on Ogirin® 2000

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Num. of Proc.

S
pe

e
du

p

SGI

predicated

14

Result of Execution
The program to which our method is applied

ran 21 times faster than the sequential one
on 31 processors and
ran 4.3 times faster than the program
compiled by SGI® parallelizing compiler.

15

6. Conclusion

We have implemented the predicated
data-flow analysis in our module.
Initial evaluation shows the effectiveness
of the predicated data-flow analysis.

SGI and Origin are registered trademarks in the United States and/or other countries worldwide.

⑩ Development of Predicated Data-flow Analysis

Motoyasu TAKABATAKE1, 2 1 APC Technology Group 2 Hitachi, Ltd.

