

Automatic Data Distribution Method for Distributed Shared Memory Machines

Takashi HIROOKA 1, 2

¹ APC Technology Group ² Hitachi, Ltd.

Contents

- 1. Introduction
- 2. The First Touch Control (FTC) Method
- 3. The FTC Method to Indirect Reference Arrays
- 4. Evaluation
- 5. Conclusion

1.1 Background

The clock speed of CPUs is growing rapidly.

However, it will run up against an atomic wall in the near future.

So, various types of multiprocessors are proposed:

- SMP: Shared Memory Multiprocessors
- DMP: Distributed Memory Multiprocessors
- DSM: Distributed Shared Memory Multiprocessors

The DSM inherits both advantages of SMP (easy parallel programming) and DMP (good scalability).

So, it is promising.

1.2 Disadvantage of DSM & Conventional methods

One of disadvantages of DSM is

slow remote memory accesses.

The key solution to overcome it is

to increase data locality (or to distribute data appropriately).

Some methods are proposed:

- · First Touch mechanism
- Page Migration
- Data Distribution Directives

HITACHI

1.3 Conventional methods (Definition)

• First Touch data distribution mechanism

OSs assign each page to the node that accesses the page first.

Page Migration mechanism

OSs migrate a page dynamically to the node that accesses the page frequently.

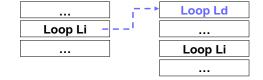
• Data distribution directives

Users insert those directives in their programs. Then, a compiler assigns the specified data to the nodes in the specified manner.

1.4 Problem & Purpose

reatures & problem			
Method	First Touch (OS)	Page Migration	Directives
Features	Good for consistent access pattern	Dynamic, flexible	Good for consistent & regular pattern
Problem	It depends on the 1 st access pattern	Large overhead	Difficult to specify ir-regular pattern

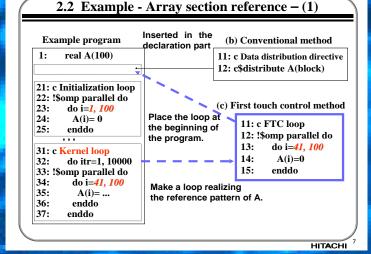
Purpose

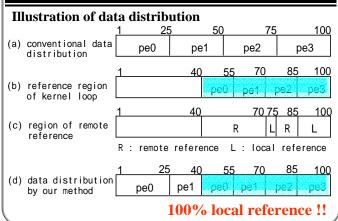

HITACHI

To propose a data distribution method that is independent of the 1st acces pattern, has low overhead, and supports irregular access patterns.

First Touch Control by Compiler

2.1 Basic Strategy of First Touch Control Method


- (1) Find in a program the most important loop (Li); i.e., that consumes much execution time.
- (2) Extract a data access pattern in the loop.
- (3) Make a loop (Ld) realizing the pattern.
- (4) Place the loop at the beginning of the program.


The FTC is independent of the 1st acces pattern, has low overhead (only assignment stmt), and supports irregular access patterns.

HITACHI

HITACHI

2.3 Example - Array section reference – (2)

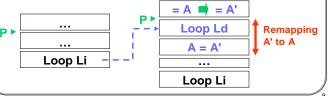
HITACHI

HITACHI

HITACHI

25

20


ගී 10

HITACHI

HITACHI

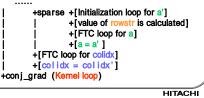
3.1 FTC Method to indirect reference arrays

- (1) Find in a program the most important loop (Li) that includes indirect references to A(J(i)).
- (2) Extract a data access pattern in the loop.
- (3) Make a loop (Ld) realizing the pattern.
- (4) Place the loop just after the point (P) where the values of the index array (J) are calculated.
- (5) Replace each reference to A preceding P with A'.
- (6) Insert A=A' following Ld.

4.1 Speedup of CG (class A)

HITACHI

3.2 Example - NPB2.3serial / CG -Our FTC method is applied interprocedurally.


!\$omp parallel do

do j = 1, n do k = rowstr(j), rowstr(j+1)-1sum = sum + a(k) * p(colidx(k))enddo q(j) = sumenddo

Call graph

main +makea +[Initialization loop for colidx_clone]

HITACHI 13

4.1 Evaluation Environment

Evaluation

SGI® Origin® 2000

•CPU: R10000®, 195MHz

•Structure: DSM (32 PEs= 2PEs/node x 16 nodes) •L1: 32KB / 32KB

•L2: 4MB/PE

•Compiler: MIPSpro[™] Fortran90 Version 7.30

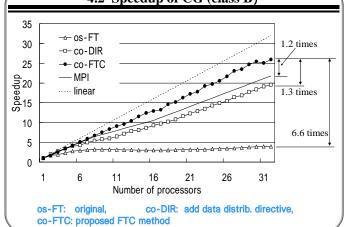
EvaluationP

os-FT: original

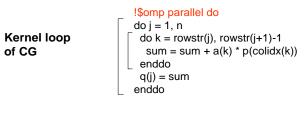
co-DIR: compiler data distrib. directive co-FTC: proposed FTC method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Number of processors

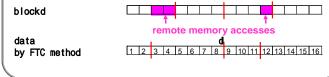
os-FT: original co-DIR: add data distrib. directive co-FTC: proposed FTC method


--- co-DIR

→ co-FTC


- linear

HITACHI



4.3 Illustration of data distribution

Illustration of data distribution

5. Conclusions

- We have implemented our automatic data distribution method for DSM.
- On SGI® Origin® 2000 (32 processors), the FTC-version of NPB2.3serial/CG (class B) ran 6.6 times faster than the conventional versions.

GI and Origin are registered trademarks in the United States and/or other countries worldwide R10000 is a registered trademark and MIPSpro is a trademark, used under license by Silicon Graphics, Inc., in the United States and/or other countries worldwide.

HITACHI