‘Advanced

rallelizing
Compiler

Yuichiro AOK] 1.2

Interprocedural Multigrain Parallelization

1 APC Technology Group 2 Hitachi, Ltd.

Contents

1. Introduction
2. Macro Flow Graph
3. Implementation
3.1 Structure
3.2 Data Dependence Information
3.3 Task Data Dependence Analysis
3.4 Task Parallelization
4. Evaluation
5. Conclusion

-

Advanced Parallelizing Compiler Project HITACHI *

4 3.1 Structure)

Fortran Program
WPP* Module

| Control Flow Analysis |

All are done interprocedurally.
(Dep. : Dependence)

| Data Dep. Analysis |
\|/

Task Control Dep. Analysis |

| Task Dep. Analysis

Task Data Dep. Analysis |

| Loop Parfilllllellzatlon | Static Task Scheduling |
| Task Parallelization o

Parallel Task Determination |

N
| OpenMP Program Generation |
v
\ [OpenMP Program] *): Whole Program Parallelizer
4

Advanced Parallelizing Compiler Project HITACHI

4 3.4 Task Parallelization(1/5) N

- Policy -

The task parallelization phase

applies static scheduling.
(We assume that the number of processors

is given at compile time.)

doesn’t exploit nested parallelism.

gives higher priority to loop parallelism
over task parallelism.

assigns each thread team associated with
__a certain parallel loop to all processors.

Advanced Parallelizing Compiler Project HITACHI

7

4 3.4 Task Parallelization(4/5))
Example (The case of analyzing layer LO)
1
QO
1 e[S

If TO(LO)<TO(L1,L2,L3),
LO becomes a
candidate of task
parallelism and
L1,L2, and L3 are
serialized.

A0

T0 L2

== Control Flow Edge
(® LOOP or CALL Node

O Parallelizable

Advanced Parallelizing Compiler Project HITACHI
E sl

@ Parallel Candidate
-

10

é 4. Evaluation)

~

Output Source Image of Parallel Task :

Initialize task start flags.

Initialize task end flags.
!$omp parallel private(...)

Get thread number.

<Task1>
C Task1[starts]
S . <Critical Section Starts>
IHEEES (e veEies: if (Task1 start flag is initial value) then
while(! (All task end flags
Task1 start flag = thread number
are set)) { "
J endif
<Task1> i .
<Task2> <Critical Section Ends>
. if (Task1 start flag is thread number) then

<Task1 Body>

Set taskl end flag.
Advanced Parallelizing Compiler Project HITACHI

}end While
!$omp end parallel

-

o

endif
C Task1[ends]

13

1. Introd_uction

Background

Exploiting thread-level parallelism of a program is
indispensable for parallelizing compilers on SMPs.

Problem
Most of the commercial parallelizing compilers exploit

loop parallelism only.
Purpose

To develop a compiler module that exploits
interprocedural task parallelism of the program

on top of loop parallelism.

Advanced Parallelizing Compiler Project HITACHI 2

/" 3.2 Data Dependence Information

- Definition -

The set of variables possibly defined.
The set of variables possibly used
before definition. c Var
The set of pairs of reaching-mod variables

and tasks including their mod refs. < VarxTask
The set of pairs of reaching-use variables

and tasks including their use refs. < VarxTask

c Var

The set of all variables
The set of all tasks

Advanced Parallelizing Compiler Project HITACHI 2

4 3.4 Task Parallelization(2/5))

- Algorithm -

(1) Apply CP/MISF-based static scheduling to tasks
in each layer of MFG. Scheduled tasks must be
under the same conditions.

(2) Evaluate predicted grain size (PGS) of each layer.

The following is done traversing MFG
in reverse DFN order.

(3) Compare the PGS of current working layer with those of
its parallelizable descendant layers.

(4) Choose the layer with the shortest PGS
as the parallel candidate.

\ (DFN : Depth-First Numberingy

8

Advanced Parallelizing Compiler Project HITACHI
m

4 3.4 Task Parallelization(5/5) I

Example (The case of analyzing layer LO)

If TO(LO) TO(L1,L2,L3),
LO is serialized and |
L1,L2, and L3
become candidates of
task parallelism.

-=* Control Flow Edge
(® LOOP or CALL Node

@ Parallel Candidate
o

O Parallelizable

Advanced Parallelizing Compiler Project HITACHI
¥

(- 4. Evaluation)

[Environment]
SGI® Origin® 2000 R10000® 195MHz x 32, Memory 11GB
Compiler MIPSpro™ Fortran90 Ver7.30
- Options
Serial

11

-Ofast=ip27 -LNO:fusion=2
Serial
Serial

Parallel (Conventional)
Parallel (This Study)

-apo automatic parallelization
-mp OpenMP parallelization

[Performance]
Task parallel program ran 2.75 times faster
than the conventional one in 5 processors.

Num of PEs Serial 1 2 8l 4 5 6 1 8
Conventionalfsec.] 9.85 9.71 9.78 9.78 9.78 9.79 9.7 9.63 9.7
This Study[sec.] - 880 746 498 435 355 381 381 3.80
Speeduj — 111 131 1.96 2.25 2.75 2.56 256 257

cf.) Speedup = (The fastesf result of the conventional case)/(This study).

SGI and Origin are registered trademarksin the United States and/or other countries worldwide.
R10000 is aregistered trademark and MIPSpro is a trademark, used under license by |

Silicon Graphics, Inc., in the United States and/or other countries worldwide.
Advanced Parallelizing Compiler Project HITACHI

14

4 2. Macro FLow Graph(MFG)

Example

program main

read(*,*) x(1),x(100)
if(x(1).gt.0) call sub(x)
write(*,*) x(100)

subroutine sub(x)
doi =1, 99
x(1+1)=x(i)+i

B B:read(*,*') X(1) x(100) |
{ B8 write(*/9x(100)

Each node(BB,CALL,LOOP) is regarded as

*> Control Flow Edge }
)

Advanced Parallelizing Compiler Project HITACHI °

/" 3.3 Task Data Dependence Analysis

Analyze task data dependence for each layer
of MFG. (task:node of MFG)

Ex. The case of flow dependence

euse(T)={x}
rmod(T)={(X,P), ...}

P, T Task p

pr. VarxTask—Var Projection to Task P,

euse(T)n pro(rmod(T))% ¢
Flow Dependence of Task T to P

Then macro-flow graph(MFG) is generated. Y,

-

Advanced Parallelizing Compiler Project HITACHI g

4 3.4 Task Parallelization(3/5) N

Example (The case of analyzing layer L0)

TO(LO)
Predicted grain size(PGS)
of LO when LO is
task-parallelized.

TO(L1, L2, L3)
L2 Predicted grain size(PGS)
of LO when L1,L2,and L3
are task-parallelized.

--~ Control Flow Edge
(® LOOP or CALL Node

MFEG graph with 7 layers.

Parallelizable

-

‘Advanced Parallelizing Compiler Project HITACHI _°

4 4. Evaluation)

All'loops are unparallelizable.
Task-parallelism is 5.

Input program

subroutine subl

D

Parallel

. L — subroutine sub22

-

Parallelizable

i
//i/;////// loo
\ end end
Advanced Parﬂiini Comﬁiler Project HITACHI

4 5. Conclusion)

12

1. We have developed interprocedural multigrain
parallelization technique in our module.
This technique has the following features :

+ Interprocedural Task Dependence Analysis.
+ CP/MISF-based Static Task Scheduling.

2. Initial evaluation shows effectiveness of our
technique.

-

‘Advanced Parallelizing Compiler Project HITACHI >

