
Toshihiro Ozawa1,2, and Akira Asato1,2

(1 APC Technology Group 2Fujitsu Limited)

Coarse Grain Parallelization
and

Speculative Execution

1

Goal
Development of coarse grain parallelizing module which treats
both speculative and non-speculative execution uniformly.

Coarse Grain Parallelization and Speculative Execution
Motivation

To achieve a speed-up beyond the loop parallelism,
we try to exploit the procedure parallelism and speculative execution.

Structure of Compiler Modules

Speculative
ExecutionMultigrain Parallelization

Coarse Grain
Non speculative

Execution

Midium Grain
Control Speculation

Data & Control
Analysis

Paralell Task
Selection

Speculative
Execution Code

Generation

Non Speculative
Execution Code

Generation
Inter Procedure

Analysis 2

Speculative task：　Super Block
Input Data: 　Referenced data defined outside the speculative task
Output Data: defined data referenced outside the speculative task

Speculative Task

r1 = .. .

 = r1 …
r2 = ...

r1 = ...BB1

BB2

BB3

BB4

BB5

T
F

T

T

F

F

 = r2 . ..

Input Data Dep.

Output Data Dep.

Execution Commitment Edge
Sets of edges to which
it is decided that a
speculative task is
executed at last

Non-execution Commitment Edge
Sets of edges to which
it is decided that a
speculative task is
NOT executed at last

Data Preparation Point
The final instruction to
which Input Data of a
speculative task is decided

Analysis for
Coarse Grain Parallelization and Speculative Execution

3

Operations when the speculation succeed

Data Preparation Point

Speculative Task
Invocation

Execution Commitment Edge

Output Data Globalization
Speculative Task

Original Task

Finish

Output Data

Output Data
Output Data is maintained in the local
until the execution commitment
edge is passed.

Speculative Task = r1 …
r2 = ...

r1 = ...BB1

BB2

BB3

BB4

BB5

T
F

T

T
F

F

 = r2 ...

Input Data

Execution Commitment Edge
Speculative task is committed.
Output Data can be read from
outside of it.
(Output Data Globalization)

Non-execution Commitment Edge
Speculative task
is canceled.

Data Preparation Point
Speculative task is invoked.

Parallel Execution

4

Operations when the speculation fails

Data Preparation Point

Speculative Task
Invocation

Non-execution Commitment Edge

Cancel

Speculative Task

Original Task

Finish

Output Data
Output Data is maintained in the local
until the execution commitment
edge is passed.

Speculative Task = r1 …
r2 = ...

r1 = ...BB1

BB2

BB3

BB4

BB5

T
F

T

T
F

F

 = r2 ...

Input Data

Execution Commitment Edge
Speculative task is committed.
Output Data can be read from
outside of it.
(Output Data Globalization)

Non-execution Commitment Edge
Speculative task
is canceled.

Data Preparation Point
Speculative task is invoked.

5

Selection of Parallel Tasks

Data Preparation Point

Speculative Task
Invocation

Non-execution Commitment Edge

Cancel
Speculative Task

Original Task

Finish

⑤ Short distance between Data Preparation Point and Non-execution Commitment Edge

The following conditions are preferable for parallel execution.

④ Distance between Data Preparation point and Execution Commitment Edge:
•Long Speculative Execution
•Short or minus Non-speculative Execution

③ Little Output Data
② Substantial task as a parallel task

①Long distance between Data Preparation Point and Output Data Use

Data Preparation Point

Speculative Task
Invocation

Execution Commitment Edge

Output Data globalization
Speculative Task

Original Task

Finish

⑥Long Distance between
Execution Commitment Edge
and Output Data Use

Output Data Use

6

(1) Find the top block of the speculative or non-speculative task.
For each Basic Block

•distance of data preparation point and execution commitment edge is large
that basic block is the top block of speculative task (turn to yellow)

•(distance of data preparation point and the top of the block is large) AND
 (distance of execution commitment edge and the top of the block is large)

that basic block is the top block of non-speculative task (turn to red)

Algorithm of Parallel Task Selection (1)

1

2

3

4

5

6

8

12

7

9

10

11

1

2

3

4

5

6

8

12

7

9

10

11

7

(2) Find the end of the speculative or non-speculative task.
For each task top basic block

Find the furthest basic block such that
•dominated by the task top block
•postdominates the task top block
•there is neither yellow nor red block in the pass from the task top block to it

Algorithm of Parallel Task Selection (2)

1

2

3

4

5

6

8

12

7

9

10

11

1

2

3

4

5

6

8

12

7

9

10

11
8

(3) make tasks which consist on the blocks which don’t belong to any tasks.

Algorithm of Parallel Task Selection (3)

1

2

3

4

5

6

8

12

7

9

10

11

1

2

3

4

5

6

8

12

7

9

10

11

9

(4) unify the small tasks.

Algorithm of Parallel Task Selection (4)

1

2

3

4

5

6

8

12

7

9

10

11

1

2

3

4

5

6

8

12

7

9

10

11

10

Example of Speculative Execution(1)

 DO 001 I0 = 1, N3
 DO 001 I1 = 1, N
 DO 001 J1 = 1, N2
 DO 001 K1 = 1, N2
 001 A(I1,J1,K1) = I1+J1*K1+A(I1,J1,K1)

 DO 002 I0 = 1, N3
 DO 002 I2 = 1, N
 DO 002 J2 = 1, N2
 DO 002 K2 = 1, N2
 002 B(I2,J2,K2) = I2+J2+K2+B(I2,J2,K2)+A(I2,J2,K2)

 IF(B(N,N2,N2) .EQ. 0.) THEN
 DO 003 I0 = 1, N3*3
 DO 003 I3 = 1, N
 DO 003 J3 = 1, N2
 DO 003 K3 = 1, N2-1
 003 RESULT1 = RESULT1 + A(I3,J3,K3+1)/ A(I3,J3,K3)
 ELSE
 DO 004 I0 = 1, N3*3
 DO 004 I4 = 1, N
 DO 004 J4 = 1, N2
 DO 004 K4 = 1, N2-1
 004 RESULT2 = RRESULT2 + A(I4,J4,K4+1)* A(I4,J4,K4)
 ENDIF

 999 WRITE(6, *) 'RESULT1=', RESULT1
 WRITE(6, *) 'RESULT2=', RESULT2

Loop1

Loop2

Loop3 Loop4

16sec

24sec

19sec

Total: 59sec
Alpha Server GS160 Model 6/73 :Alpha 21264 (731MHz) × 8
Alpha Digital Fortran Compiler: -v -arch ev6 -O5

Loop ＩＤ 2 3 4
of Instructions estimated 201,010,100 201,010,100 201,010,100
Data Preparation ＢＢid 11 1 1
of Instructions estimated 0 405,030,307 405,030,307

Execution Commitment BBid 30 16 16
of Instructions estimated 204,020,206 2 2
Non-execution Commitment BBid - 16 16
of Instructions estimated - 2 2

Data Use BBid 16 27 27
of Instructions estimated 0 0 0

12

 ALPHA = ZDOTC(SIZE,RD,1,R,1)
DO 100 ITER = 1,NITER
 CALL MATMUL(U,N1,N2,N3,N4,KAPPA,P,AUX,UD)
 BETA = ZDOTC(SIZE,RD,1,UD,1)

 DELTA = ALPHA/BETA
 CALL ZCOPY(SIZE,R,1,S,1)
 CALL ZAXPY(SIZE,-DELTA,UD,1,S,1)

 CALL MATMUL(U,N1,N2,N3,N4,KAPPA,S,AUX,T)

　　　　ST = ZDOTC(SIZE,T,1,S,1)
 TT = ZDOTC(SIZE,T,1,T,1)

 OMEGA = ST/TT

 CALL ZCOPY(SIZE,S,1,R,1)
 CALL ZAXPY(SIZE,-OMEGA,T,1,R,1)

　　　　CALL ZAXPY(SIZE,DELTA,P,1,X,1)
 CALL ZAXPY(SIZE,OMEGA,S,1,X,1)

 ALPH = ZDOTC(SIZE,RD,1,R,1)
 RHO = ALPH/ALPHA * DELTA/OMEGA
 ALPHA = ALPH

　　　　CALL ZAXPY(SIZE,-OMEGA,UD,1,P,1)
 CALL ZSCAL(SIZE,RHO ,P,1)
 CALL ZAXPY(SIZE,ONE,R,1,P,1)

　 RNRM2 = DZNRM2(SIZE, R,1)
 EPS = RNRM2 / R0NRM2
　　　CKJS PRINT *, ITER, EPS
 WRITE(*,992) ITER, EPS
992 FORMAT(I8,D15.8)

 100 CONTINUE

Case Study of Procedure level Parallelization
(CFP2000/168.wupwise)

X:Input array
Y:Output array

•Data Dependency between the procedures in main loop of wupwise

13

Case Study of Procedure level Parallelization
(CFP2000/168.wupwise)

•6 parallel tasks are extracted from the main loop

s 3_4, 3_5, 3_2_T

18 TT = ZDOTC(SIZE,T,1,T,1)
18 OMEGA = ST/TT

24 CALL ZAXPY(SIZE,-OMEGA,UD,1,P,1)

25 CALL ZSCAL(SIZE,RHO,P,1)
26 CALL ZAXPY(SIZE,ONE,R,1,P,1)

w 2_3

w 5_6

w 4_6

s 6_1

13 CALL MATMUL(U,N1,N2,N3,N4,KAPPA,P,AUX,UD)
14 BETA = ZDOTC(SIZE,RD,1,UD,1)

14 DELTA = ALPHA/BETA
s 1_2, 1_5

w 2_1, 6_1

w 4_1, 5_1

15 CALL ZCOPY(SIZE,R,1,S,1)

16 CALL ZAXPY(SIZE,-DELTA,UD,1,S,1)

17 CALL
MATMUL(U,N1,N2,N3,N4,KAPPA,S,AUX,T)

18 ST = ZDOTC(SIZE,T,1,S,1)

w 1_2

s 2

s 2_1, 2_3

w 4_2_T, 5__2

w 3_2 19 CALL ZCOPY(SIZE,S,1,R,1)

20 CALL ZAXPY(SIZE,-OMEGA,T,1,R,1)

23 ALPH = ZDOTC(SIZE,RD,1,R,1)
23 RHO = ALPH/ALPHA * DELTA/OMEGA

23 ALPHA = ALPH

w 2_4_S, 7_4

s 4_6

w 3_4
s 4_7, 4_2_T

s 4_1

w 1_5
21 CALL ZAXPY(SIZE,DELTA,P,1,X,1)

22 CALL ZAXPY(SIZE,OMEGA,S,1,X,1)
w 3_5

s 5_2
s 5_6, 5_1

27 RNRM2 = DZNRM2(SIZE,R,1)

27 EPS = RNRM2 / R0NRM2
27 WRITE(*,992) ITER, EPS

w 4_7

s 7_4

14

0.9

0.95

1

1.05

1.1

1.15

1.2

Original
Sequential

Procedure level
Parallelization

Alpha Server GS160 Model 6/73
Alpha 21264 (731MHz) × 8
Memory: 4GB

Alpha Digital Fortran Compiler
Original Sequential: -v -arch ev6 -O5 –fkapargs=’ -conc -ur=1’
Procedure Parallel: -v -arch ev6 -O5 -omp -pthread -call_shared

Pe
rf

or
m

an
ce

Case Study of Procedure level Parallelization
(CFP2000/168.wupwise)

15

Summary

• We have eveloped the parallelizing module which exploits both
speculative and non-speculative execution at coarse grain level.

•Task: loop or procedure
•Speculation: control

• It is comfirmed that the performance is increased by the speculative
execution, which is suitable for it.

• Some procedures are extracted as a parallel task from
Spec2000/168.wupwise.
The performance has increased by17% on Alpha Server GS160
Model 6/73.

⑤

11

Example of Speculative Execution(2)

Loop1

Loop2 Loop4 Loop5

!$OMP PARALLEL SHARED(A,B,P0,P1,P2,P3)
!$OMP SECTIONS
!$OMP SECTION
 DO 110 I1 = 1, N
 DO 110 J1 = 1, N2
 DO 110 K1 = 1, N2
 　 A(I1,J1,K1) = 0
 110 B(I1,J1,K1) = 0
 CALL OMP_UNSET_LOCK(P0)
!$OMP SECTION
 CALL OMP_SET_LOCK(P0)
 CALL OMP_UNSET_LOCK(P0)
 DO 001 I0 = 1, N3
 DO 001 I1 = 1, N
 DO 001 J1 = 1, N2
 DO 001 K1 = 1, N2
 001 A(I1,J1,K1) = I1+J1*K1+A(I1,J1,K1)
 CALL OMP_UNSET_LOCK(P1)
!$OMP SECTION
 CALL OMP_SET_LOCK(P1)
 CALL OMP_UNSET_LOCK(P1)
 DO 002 I0 = 1, N3
 DO 002 I2 = 1, N
 DO 002 J2 = 1, N2
 DO 002 K2 = 1, N2
 002 B(I2,J2,K2) = I2+J2+K2+B(I2,J2,K2)+A(I2,J2,K2)
 IF(B(N,N2,N2) .EQ. 0.) THEN
 P3 = -1
 CALL OMP_UNSET_LOCK(P2)
 ELSE
 P3 = 1
 CALL OMP_UNSET_LOCK(P2)
 ENDIF

40sec

!$OMP SECTION
 CALL OMP_SET_LOCK(P1)
 CALL OMP_UNSET_LOCK(P1)
 DO 003 I0 = 1, N3*3
 DO 003 I3 = 1, N
 DO 003 J3 = 1, N2
 DO 003 K3 = 1, N2-1
 003 TMP1 = TMP1 + A(I3,J3,K3+1)/ A(I3,J3,K3)
 CALL OMP_SET_LOCK(P2)
 CALL OMP_UNSET_LOCK(P2)
 IF(P3 .EQ. 1) GOTO 430
 RESULT1 = TMP1
 430 CONTINUE
 :

Alpha Server GS160 Model 6/73 :Alpha 21264 (731MHz) × 8
Alpha Digital Fortran Compiler: -v -arch ev6 -O5

