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Pipeline Parallelism
extracted by Affine Partitioning

Any imperfectly nested loop nests are transformed
as follows:

all the assignment statements are surrounded by
as many fully permutable loops as possible 

- m dimensional tiling can be done 

m loops

- m-1 dimensional pipeline parallel execution can be done
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Refined Algorithm
1.  Assume the number of fully permutable loops
     in the transformed loop nest
the number of  the common 
surrounding loops
 in the original loop nest

<= rank A the maximum depth of
the original loop nest<=

do  i = 1, N
    do  j = 1, i-1
         do  k  = 1, j-1
              a(i, j) = a(i, j)-a(i, k)*a(j, k)
          enddo
          a(i, j) = a(i, j) / a(j, j)
     enddo
    do  k = 1, i-1
         a(i, i) = a(i, i)-a(i, k)*a(i, k)
    enddo
    a(i, i) = sqrt(a(i, i))
enddo

1 <= rank A <= 3 
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How to generate pipelined code in openMP

fully permutable

interchange

1.   Interchange

do  j = 1, ny-2
    do  k = 1, nz-2
        do  i = 1, nx-2
              ...
              ...
         enddo
     enddo
enddo

do  k = 1, nz-2
    do  j = 1, ny-2
        do  i = 1, nx-2
              ...
              ...
         enddo
     enddo
enddo
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The Alpha Server

- Alpha 21264 (731MHz) × 8
   (The cc-NUMA machine in which each unit has 4 processors) 
- L1-Cache (on-chip)
　　I-Cache 64KB
　　D-Cache 64KB(2-way)
  L2-Cache (direct-map, off-chip)   4MB
- Memory   4GB

The Alpha Digital Fortran Compiler

The Alpha Server GS160 Model 6/73

parallelized code： -v -arch ev6 -O5 –fkapargs=’ -conc -ur=1’
sequential code：   -v -arch ev6 -O5 –fkapargs=’-ur=1’

- compile options:
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Structure of Medium Grain Level Parallelizer

constant propagation / induction variable recognition
scalar expansion / loop normalization / array privatization

Medium Grain Level Parallelizer (affine partitioning-based)

 array contraction

OpenMP  Source

Source Program

(Loop Level)
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Pipeline Parallelism
 extracted by Affine Partitioning (con’t)

fully permutable
do  i = 1, N
    do  j = 1, i
         do  k  = 1, i
              if (j < i .and. k < j)
                  a(i, j) = a(i, j)-a(i, k)*a(j, k)
              if  (j < i .and. k == j)
                  a(i, j) = a(i, j) / a(j, j)
              if   (j == i .and. k < i)
                 a(i, i) = a(i, i)-a(i, k)*a(i, k)
               if  (j == i .and. k == i)
                  a(i, i) = sqrt(a(i, i))
          enddo
    enddo
enddo

Example :

do  i = 1, N
    do  j = 1, i-1
         do  k  = 1, j-1
              a(i, j) = a(i, j)-a(i, k)*a(j, k)
          enddo
          a(i, j) = a(i, j) / a(j, j)
     enddo
    do  k = 1, i-1
         a(i, i) = a(i, i)-a(i, k)*a(i, k)
    enddo
    a(i, i) = sqrt(a(i, i))
enddo
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Refined Algorithm (con’t)

2.  Ignore the loop bounds of common surrounding loops
     to simplify the inequality system

do  i = i0, i1
    do  j = LBj(i), UBj(i)
        A(f(i, j)) = …
    enddo
    do  k = LBk(i), UBk(i)

… = A(g(i, k))
    enddo
enddo

ignore
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How to generate pipelined code in openMP (Cont.)

2.   Consider sequential
      execution order

Iteration space

data dependence

j

ksequential
execution order

do  j = 1, ny-2
    do  k = 1, nz-2
              ...
              ...
     enddo
enddo
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Speedup of applu on the the Alpha Server

0

1

2

3

4

5

1 2 3 4 5 6 7 8
The number of CPUs

Sp
ee

du
p

apc
para

3

Affine Partitioning [Lim & Lam97]

- A lot of transformations can be done automatically   

-  The followings can be done at the same time      

 improve data locality
 reduce synchronization overhead

 parallelization  

- Extract pipeline parallelism

6

How to extract pipeline parallelism
1.  Construct an inequality system  Ax >= 0  from 
    array subscripts and loop bounds
2.  Solve  Ax >= 0  in such a way that rank A should be 
    as large as possible (rank A  =  the number of fully permutable loops)

Problem of extracting pipeline parallelism
As the number of assignment statements in a loop nest
 increases a little,  the solution space becomes very large

It takes a large amount of memory and compile time
to solve the inequality system directly
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The main loop of SPEC CFP2000 / applu

jacu ()

jacld ()

blts ()

buts ()

doall parallelism

pipeline parallelism

rhs ()

pipeline parallelism

doall parallelism

doall parallelism

pipelineable 
& fully permutable

do  k = 1, nz-2
    do  j = 1, ny-2
        do  i = 1, nx-2

...
        enddo
    enddo
enddo
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How to generate pipelined code in openMP (Cont.)

3.  Consider parallel
     execution order

j

k

P0

P1

P2

myklb

mykub

do  j = 1, ny-2
     waitPrevProcessor()
    do  k = myklb, mykub
              ...
              ...
    enddo
     signalToNextProcessor()
enddo

implemented in OpenMP
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Conclusion

-  The performance of SPEC CFP2000 / applu  can be 
    2.5 times faster than that on Alpha Server

-  Pipelined code is implemented in OpenMP

-   Pipeline parallelism are automatically extracted from 
     the complicated imperfectly nested loop


