
③ Extracting Loop Level Pipeline
Parallelism and its Evaluation
Akira HOSOI1,2, Masaki ARAI1,2, Toshihiro OZAWA1,2

(1 APC Technology Group 2 Fujitsu Limited)

1

Extracting Loop Level Pipeline Parallelism
and its Evaluation

2. Affine Partitioning

3. How to implement pipeline parallelism in OpenMP

4. Evaluation

2.1. How to extract pipeline parallelism
 and its problem
2.2. Refined Algorithm

1. The structure of the medium grain parallelizer

4

Pipeline Parallelism
extracted by Affine Partitioning

Any imperfectly nested loop nests are transformed
as follows:

all the assignment statements are surrounded by
as many fully permutable loops as possible

- m dimensional tiling can be done

m loops

- m-1 dimensional pipeline parallel execution can be done

7

Refined Algorithm
1. Assume the number of fully permutable loops
 in the transformed loop nest
the number of the common
surrounding loops
 in the original loop nest

<= rank A the maximum depth of
the original loop nest<=

do i = 1, N
 do j = 1, i-1
 do k = 1, j-1
 a(i, j) = a(i, j)-a(i, k)*a(j, k)
 enddo
 a(i, j) = a(i, j) / a(j, j)
 enddo
 do k = 1, i-1
 a(i, i) = a(i, i)-a(i, k)*a(i, k)
 enddo
 a(i, i) = sqrt(a(i, i))
enddo

1 <= rank A <= 3

10

How to generate pipelined code in openMP

fully permutable

interchange

1. Interchange

do j = 1, ny-2
 do k = 1, nz-2
 do i = 1, nx-2
 ...
 ...
 enddo
 enddo
enddo

do k = 1, nz-2
 do j = 1, ny-2
 do i = 1, nx-2
 ...
 ...
 enddo
 enddo
enddo

13

The Alpha Server

- Alpha 21264 (731MHz) × 8
 (The cc-NUMA machine in which each unit has 4 processors)
- L1-Cache (on-chip)
　　I-Cache 64KB
　　D-Cache 64KB(2-way)
 L2-Cache (direct-map, off-chip) 4MB
- Memory 4GB

The Alpha Digital Fortran Compiler

The Alpha Server GS160 Model 6/73

parallelized code： -v -arch ev6 -O5 –fkapargs=’ -conc -ur=1’
sequential code： -v -arch ev6 -O5 –fkapargs=’-ur=1’

- compile options:

2

Structure of Medium Grain Level Parallelizer

constant propagation / induction variable recognition
scalar expansion / loop normalization / array privatization

Medium Grain Level Parallelizer (affine partitioning-based)

 array contraction

OpenMP Source

Source Program

(Loop Level)

5

Pipeline Parallelism
 extracted by Affine Partitioning (con’t)

fully permutable
do i = 1, N
 do j = 1, i
 do k = 1, i
 if (j < i .and. k < j)
 a(i, j) = a(i, j)-a(i, k)*a(j, k)
 if (j < i .and. k == j)
 a(i, j) = a(i, j) / a(j, j)
 if (j == i .and. k < i)
 a(i, i) = a(i, i)-a(i, k)*a(i, k)
 if (j == i .and. k == i)
 a(i, i) = sqrt(a(i, i))
 enddo
 enddo
enddo

Example :

do i = 1, N
 do j = 1, i-1
 do k = 1, j-1
 a(i, j) = a(i, j)-a(i, k)*a(j, k)
 enddo
 a(i, j) = a(i, j) / a(j, j)
 enddo
 do k = 1, i-1
 a(i, i) = a(i, i)-a(i, k)*a(i, k)
 enddo
 a(i, i) = sqrt(a(i, i))
enddo

8

Refined Algorithm (con’t)

2. Ignore the loop bounds of common surrounding loops
 to simplify the inequality system

do i = i0, i1
 do j = LBj(i), UBj(i)
 A(f(i, j)) = …
 enddo
 do k = LBk(i), UBk(i)

… = A(g(i, k))
 enddo
enddo

ignore

11

How to generate pipelined code in openMP (Cont.)

2. Consider sequential
 execution order

Iteration space

data dependence

j

ksequential
execution order

do j = 1, ny-2
 do k = 1, nz-2
 ...
 ...
 enddo
enddo

14

Speedup of applu on the the Alpha Server

0

1

2

3

4

5

1 2 3 4 5 6 7 8
The number of CPUs

Sp
ee

du
p

apc
para

3

Affine Partitioning [Lim & Lam97]

- A lot of transformations can be done automatically

- The followings can be done at the same time

 improve data locality
 reduce synchronization overhead

 parallelization

- Extract pipeline parallelism

6

How to extract pipeline parallelism
1. Construct an inequality system Ax >= 0 from
 array subscripts and loop bounds
2. Solve Ax >= 0 in such a way that rank A should be
 as large as possible (rank A = the number of fully permutable loops)

Problem of extracting pipeline parallelism
As the number of assignment statements in a loop nest
 increases a little, the solution space becomes very large

It takes a large amount of memory and compile time
to solve the inequality system directly

9

The main loop of SPEC CFP2000 / applu

jacu ()

jacld ()

blts ()

buts ()

doall parallelism

pipeline parallelism

rhs ()

pipeline parallelism

doall parallelism

doall parallelism

pipelineable
& fully permutable

do k = 1, nz-2
 do j = 1, ny-2
 do i = 1, nx-2

...
 enddo
 enddo
enddo

12

How to generate pipelined code in openMP (Cont.)

3. Consider parallel
 execution order

j

k

P0

P1

P2

myklb

mykub

do j = 1, ny-2
 waitPrevProcessor()
 do k = myklb, mykub
 ...
 ...
 enddo
 signalToNextProcessor()
enddo

implemented in OpenMP

15

Conclusion

- The performance of SPEC CFP2000 / applu can be
 2.5 times faster than that on Alpha Server

- Pipelined code is implemented in OpenMP

- Pipeline parallelism are automatically extracted from
 the complicated imperfectly nested loop

