

Hierarchical Multigrain Parallelization

M. Obata^{1,2}, K. Ishizaka^{1,2}, K. Kimura^{1,2}, T. Tobita^{1,2}, T. Kodaka^{1,2}, A. Murai², K. Kaminaga², K. Nagasawa², J. Shirako², A. Yoshida^{1,3}, H. Kasahara^{1,2} (¹APC Technology Group, ²Waseda University, ³Toho University)

Multigrain parallelism

- Wide use of SMP from single chip multiprocessors to high performance computers
- The gap between peak performance and effective performance is getting larger
- Reaching maturity of loop level parallelization

Multigrain parallel processing has been proposed to improve effective performance.

- Coarse grain parallelism
- Loop level parallelism
- · Near fine grain parallelism

Generation of macro-tasks

- Program is decomposed into macro-tasks (MTs)
 - Block of Pseudo Assignments (BPA): Basic Block (BB)
 - Repetition Block (RB): natural loop
 - Subroutine Block (SB): subroutine

Generation of macro-task graph

Earliest Executable Condition analysis

Hierarchical parallelism control scheme

- Estimate parallelism in each layer
 - Calculation of sequential cost of MTG and CP length
 - Considering coarse grain and loop level parallelism
- Assign required number of processors for each MTG considering parallelism of the layer
 - Assignment of processors from upper layer to lower layer
 - Selection of suitable parallel processing layer
 - Sequential execution of a layer having no parallelism

Automatic processor assignment of 103.su2cor

Using 14 processors

Coarse grain parallelization within DO400 of subroutine LOOPS

Code generation using OpenMP

Compiler generates a parallelized program using

MTG of Su2cor-LOOPS-DO400

Coarse grain parallelism PARA_ALD = 4.3

Cache optimization using Data Localization scheme

- Find Target Loop Group (TLG)
- Divide the loops considering cache size
- Define Data Localizable Loop (DLG)
- Static and dynamic scheduling for data localization
 - Dt/gain static scheduling Partial static dynamic scheduling

Loop Aligned Decomposition Loops 2,3,7 are divided into 4 smaller loops respectively

One time single level thread generation for hierarchical multigrain parallelization Threads are forked only once at the beginning of a program by OpenMP "PARALLEL SECTIONS" directive

OpenMP API

- Forked threads join only once at the end of program Compiler generates codes for each threads
- using static or dynamic scheduling schemes
- Hierarchical multigrain parallel processing is realized by ordinary OpenMP API.

Scheduling of coarse grain tasks on MTG

Static Scheduling

- At compilation time, macro-tasks are assigned to processors statically.
- Minimization of scheduling overhead and data transfer overhead

Centralized/Distributed Dynamic Scheduling

- Macro-tasks are assigned dynamically by the scheduling code exclusively generated for the MTG by compiler
- Cope with runtime uncertainty like conditional branches
- A suitable scheduling scheme is chosen for each layer of Macro-Task Graph

Conclusions

- Automatic multigrain parallelizing compiler
 - Multigrain parallelism exploitation

2.0 times on Sun Ultra80.

- Hierarchical parallelism control scheme
- Cache optimization using data localization scheme
- One-time single level thread generation
- Performance of hierarchical multigrain parallelization for Fortran77 16 programs of SPEC CFP95 and SPEC CFP2000

and the performance of Forte 6 Update 2 compiler

 Hierarchical multigrain parallelization boosted up the performance of XL Fortran compiler 3.5 times in average on IBM Regatta, 2.4 times on IBM RS6000