
1

1

Automatic Data Distribution Method
for Distributed Shared Memory Machines

Advanced Parallelizing Compiler Project
Systems Development Laboratory, Hitachi,Ltd.

Takashi HIROOKA

March 20, 2003

2

Contents

1. Introduction

2. The First Touch Control (FTC) Method

3. The FTC Method to Indirect Reference Arrays

4. Evaluation

5. Conclusion

2

3

1.1 Background

The clock speed of a single CPU is growing rapidly.

However, it will run up against an atomic wall in the
near future.

So, various types of multiprocessors are proposed:
• SMP: Shared Memory Multiprocessors
• DMP: Distributed Memory Multiprocessors
• DSM: Distributed Shared Memory Multiprocessors

The DSM inherits both advantages of SMP (easy
parallel programming) and DMP (good scalability).

So, it is promising.

4

1.2 Disadvantage of DSM & Conventional methods

One of disadvantages of DSM is
slow remote memory accesses.

The key solution to overcome it is
to increase data locality
(or to distribute data appropriately).

Some methods are proposed:
• First Touch mechanism
• Page Migration
• Data Distribution Directives

3

5

1.3 Conventional methods (Definition)

First Touch data distribution mechanism

OSs assign each page to the node that
accesses the page first.

Page Migration mechanism

OSs migrate a page dynamically to the node
that accesses the page frequently.

Data distribution directives

Users insert those directives in their programs.
Then, a compiler assigns the specified data to
the nodes in the specified manner.

6

1.4 Problem & Purpose

Method First Touch (OS) Page Migration Directives
Features Good for

consistent
access pattern

Dynamic, flexible Good for
consistent &
regular pattern

Problem It depends on
the 1st access
pattern

Large overhead Difficult to
specify ir-
regular pattern

Features & problem

Purpose
To propose a data distribution method that

is independent of the 1st acces pattern,
has low overhead, and
supports irregular access patterns.
First Touch Control by Compiler

4

7

2.1 Basic Strategy of First Touch Control Method

(1) Find in a program the most important loop (Li);
i.e., that consumes much execution time.

(2) Extract a data access pattern in the loop.
(3) Make a loop (Ld) realizing the pattern.
(4) Place the loop at the beginning of the program.

The FTC is independent of the 1st acces pattern,
has low overhead (only assignment stmt), and
supports irregular access patterns.

Loop Li
Loop Li

Loop Ld…

…
…

…

8

2.2 Example - Array section reference – (1)

11: c FTC loop
12: !$omp parallel do
13: do i=41, 10041, 100
14: A(i)=0
15: enddo

1: real A(100)

21: c Initialization loop
22: !$omp parallel do
23: do i=1, 1001, 100
24: A(i)= 0
25: enddo
・・・

31: c Kernel loop
32: do itr=1, 10000
33: !$omp parallel do
34: do i=41, 10041, 100
35: A(i)= ...
36: enddo
37: enddo

Example program

(c) First touch control method
Place the loop at
the beginning of
the program.

Make a loop realizing
the reference pattern of A.

11: c Data distribution directive
12: c$distribute A(block)

(b) Conventional methodInserted in the
declaration part

5

9

1

1

1

pe0

pe0

R

R : remote reference L : local reference

(a) conventional data
distribution

(b) reference region
of kernel loop

(c) region of remote
reference

1

pe0
(d) data distribution
by our method pe0

pe3pe2pe1

pe1 pe3pe2

RL L

pe1 pe2 pe3pe1

25 5540

50

75

10070 85

25

40

40 55

70

70

75

85

85

100

100

100

2.3 Example - Array section reference – (2)

100% local reference !!

Illustration of data distribution

10

3.1 FTC Method to indirect reference arrays

(1) Find in a program the most important loop (Li)
that includes indirect references to A(J(i)).

(2) Extract a data access pattern in the loop.
(3) Make a loop (Ld) realizing the pattern.
(4) Place the loop just after the point (P) where the

values of the index array (J) are calculated.
(5) Replace each reference to A preceding P with A'.
(6) Insert A=A' following Ld.

Loop Li
Loop Li

A = A'…
…

Loop Ld
= A = A'

…
P

P
Remapping
A' to A

6

11

3.2 Example - NPB2.3serial / CG -

main +makea +[Initialization loop for colidx_clone]
……
| +sparse +[Initialization loop for a']
| | +[value of rowstr is calculated]
| | +[FTC loop for a]
| | +[a = a']
| +[FTC loop for colidx]
| +[colidx = colidx']
+conj_grad (Kernel loop)

!$omp parallel do
do j = 1, n

do k = rowstr(j), rowstr(j+1)-1
sum = sum + a(k) * p(colidx(k))

enddo
q(j) = sum

enddo

Kernel loop
of CG

Call graph
of CG

Our FTC method is applied interprocedurally.

12

4.1 Evaluation Environment

os-FT: original
co-DIR: compiler data distrib. directive
co-FTC: proposed FTC method

SGI® Origin® 2000
•CPU: R10000®, 195MHz
•Structure: DSM (32 PEs= 2PEs/node x 16 nodes)
•L1: 32KB / 32KB
•L2: 4MB/PE
•Compiler: MIPSproTM Fortran90 Version 7.30

Evaluation System:

Evaluation Programs:

7

13

4.1 Speedup of CG (class A)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of processors

S
pe
ed
up

os-FT

co-DIR

co-FTC

linear

os-FT: original
co-DIR: add data distrib. directive
co-FTC: proposed FTC method

14

4.2 Speedup of CG (class B）

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31
Number of processors

S
pe
e
du
p

os-FT

co-DIR

co-FTC

MPI

linear

6.6 times

1.3 times

1.2 times

os-FT: original, co-DIR: add data distrib. directive,
co-FTC: proposed FTC method

8

15

!$omp parallel do
do j = 1, n

do k = rowstr(j), rowstr(j+1)-1
sum = sum + a(k) * p(colidx(k))

enddo
q(j) = sum

enddo

4.3 Illustration of data distribution

data distribution
by FTC method

block distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Kernel loop
of CG

Illustration of data distribution

remote memory accesses

16

5. Conclusions

We have implemented our automatic data distribution
method for DSM.

On SGI® Origin® 2000 (32 processors), the FTC-version
of NPB2.3serial/CG (class B) ran 6.6 times faster than the
conventional versions.

SGI and Origin are registered trademarks in the United States and/or other countries worldwide.
R10000 is a registered trademark and MIPSpro is a trademark, used under license by
Silicon Graphics, Inc., in the United States and/or other countries worldwide.

