

Hierarchical Multigrain Parallelization

M. Obata, K. Ishizaka, K. Kimura, T. Tobita, T. Kodaka, H. Nakano, H.Kaminaga, J. Shirako, A. Yoshida, H. Kasahara

Waseda University, Toho University

1

Multigrain parallelism

- Wide use of SMP from single chip multiprocessors to high performance computers
- The gap between peak performance and effective performance is getting larger
- Reaching maturity of loop level parallelization

Multigrain parallel processing has been proposed to improve effective performance.

- Coarse grain parallelism
- Loop level parallelism
- Near fine grain parallelism

Effective multigrain parallelization

- Which part should be parallelized?
- How many processors should be assigned considering the parallelism?

- It is very difficult for ordinary users to...
 - Analyze multigrain parallelism
 - Determine parallel processing layers, or nest level, and the number of processors which should be assigned

Automatic Hierarchical Parallelism Control scheme

3

Generation of macro-tasks

- Program is decomposed into macro-tasks (MTs).
 - Block of Pseudo Assignments (BPA): Basic Block (BB)
 - Repetition Block (RB) : natural loop
 - Subroutine Block (SB): subroutine

- SB and RB can be decomposed into sub macro-tasks hierarchically.
- Hierarchical MTG is generated.

7

Hierarchical parallelism control scheme

- Estimate parallelism in each layer
 - Calculation of sequential cost of MTG and CP length
 - Considering coarse grain and loop level parallelism
- Assign required number of processors for each MTG considering parallelism of the layer
 - Assignment of processors from upper layer to lower layer
 - Selection of suitable parallel processing layer
 - Sequential execution of a layer having no parallelism

9

Code generation using OpenMP

- Compiler generates a parallelized program using OpenMP API
- One time single level thread generation for hierarchical multigrain parallelization
 - Threads are forked only once at the beginning of a program by OpenMP "PARALLEL SECTIONS" directive
 - Forked threads join only once at the end of program
- Compiler generates codes for each threads using static or dynamic scheduling schemes
- Hierarchical multigrain parallel processing is realized by ordinary OpenMP API.

13

Scheduling of coarse grain tasks on MTG

- Static Scheduling
 - At compilation time, macro-tasks are assigned to processors statically.
 - Minimization of scheduling overhead and data transfer overhead
- Centralized/Distributed Dynamic Scheduling
 - Macro-tasks are assigned dynamically by the scheduling code exclusively generated for the MTG by compiler
 - Cope with runtime uncertainty like conditional branches
- A suitable scheduling scheme is chosen for each layer of Macro-Task Graph

Target machine and programs for performance evaluation

Programs

 All Fortran77 program of SPEC95FP and SPEC2000FP tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi, fpppp, wave5, wupwise, swim(2000),mgrid(2000), applu(2000), sixtrack, apsi(2000)

Target machine

- IBM pSeries690 Regatta (Power4 x 8 chips: 16 processors)
- IBM RS6000 SP 604e High Node (PowerPC604e x 8 processors)
- Sun Ultra80 (Ultra SPARCII x 4 processors)

Evaluated performance

- Automatic loop parallelization by native loop parallelizing compilers
- Hierarchical Multigrain parallelization by APC compiler

Performance of hierarchical multigrain parallelization on 4 processor workstation Sun Ultra80 Sun Forte Developer 6 Update 2 Sequential execution Automatic loop parallelization: -fast -autopar -reduction -stackvar OSCAR compiler : -fast -explicitpar -mp=openmp -stackvar 10.0 21s ■ Forte6(max) 9.0 ■ APC(max) 8.0 7.0 6.0 2 dnpeedgh 4.0 3.0 2.0 579s 569s 1035s 194s 1.0 0.0

Conclusions

- Automatic multigrain parallelizing compiler
 - Multigrain parallelism exploitation
 - Hierarchical parallelism control scheme
 - Cache optimization using data localization scheme
 - One-time single level thread generation
- Performance of hierarchical multigrain parallelization for Fortran77 16 programs of SPEC CFP95 and SPEC CFP2000
 - APC compiler boosted up the performance of XL Fortran compiler
 3.5 times in average on IBM pSeries690 Regatta,
 2.4 times on IBM RS6000 SP 604e
 and the performance of Forte 6 Update 2 compiler
 2.0 times on Sun Ultra80.